Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Yokoyama, Koki

  • Google
  • 1
  • 3
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Collisional disruption of highly porous targets in the strength regime: Effects of mixture5citations

Places of action

Chart of shared publication
Seto, Yusuke
1 / 3 shared
Nakamura, Akiko M.
1 / 2 shared
Murakami, Yuichi
1 / 2 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Seto, Yusuke
  • Nakamura, Akiko M.
  • Murakami, Yuichi
OrganizationsLocationPeople

article

Collisional disruption of highly porous targets in the strength regime: Effects of mixture

  • Seto, Yusuke
  • Nakamura, Akiko M.
  • Yokoyama, Koki
  • Murakami, Yuichi
Abstract

Highly porous small bodies are thought to have been ubiquitous in the early solar system. Therefore, it is essential to understand the collision process of highly porous objects when considering the collisional evolution of primitive small bodies in the solar system. To date, impact disruption experiments have been conducted using high-porosity targets made of ice, pumice, gypsum, and glass, and numerical simulations of impact fracture of porous bodies have also been conducted. However, a variety of internal structures of high-porosity bodies are possible. Therefore, laboratory experiments and numerical simulations in the wide parameter space are necessary. <P />In this study, high-porosity targets of sintered hollow glass beads and targets made by mixing perlite with hollow beads were used in a collision disruption experiment to investigate the effects of the mixture on collisional destruction of high-porosity bodies. Among the targets prepared under the same sintering conditions, it was found that the targets with more impurities tend to have lower compressive strength and lower resistance against impact disruption. Further, destruction of the mixture targets required more impact energy density than would have been expected from compressive strength. It is likely that the perlite grains in the target matrix inhibit crack growth through the glass framework. The mass fraction of the largest fragment collapsed to a single function of a scaling parameter of energy density in the strength regime (Π<SUB>s</SUB>) when assuming ratios of tensile strength to compressive strength based on a relationship obtained for ice-silicate mixtures. However, the dependence on Π<SUB>s</SUB> is much larger than that shown for porous targets with different internal microstructures from the targets in this study. The depth of the deep cavity specific to the high-porosity target was well represented by a dimensionless parameter using the compressive strength of both the pure glass and mixture targets. The empirical relationship of cavity depth was shown to hold for various targets used in previous studies irrespective of the internal microstructure of the targets....

Topics
  • porous
  • density
  • impedance spectroscopy
  • energy density
  • grain
  • experiment
  • simulation
  • glass
  • glass
  • crack
  • strength
  • tensile strength
  • porosity
  • sintering
  • gypsum