People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Michel, Patrick
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2023Rubble-pile structural and dynamical evolution under YORP and the pathway to a binary system
- 2023Rubble-pile structural and dynamical evolution under YORP and the pathway to a binary system
- 2021Creep stability of the DART/Hera mission target 65803 Didymos: II. The role of cohesioncitations
- 2020Validating N-body code CHRONO for granular DEM simulations in reduced-gravity environmentscitations
- 2020Simulations of high-velocity impacts on metal in preparation for the Psyche missioncitations
- 2018Rotational Failure of Rubble-pile Bodies: Influences of Shear and Cohesive Strengthscitations
- 2014Low-speed impact simulations into regolith in support of asteroid sampling mechanism design I: Comparison with 1-g experimentscitations
- 2013Numerically simulating impact disruptions of cohesive glass bead agglomerates using the soft-sphere discrete element methodcitations
- 2012Numerical Simulations of Landslides Calibrated Against Laboratory Experiments for Application to Asteroid Surface Processes
- 2012Numerical Simulations of Low-Speed Impact Disruption of Cohesive Aggregates Using the Soft-Sphere Discrete Element Method and Comparison with Experiments on Sintered-Glass-Bead Agglomerates
- 2011Simulations of low-speed impacts into cohesive aggregates and comparison with experiments on sintered glass bead agglomerates
- 2011Radar Tomography of Asteroids ASSERT / Marco Polo-R
- 2010High- and low-velocity impact experiments on porous sintered glass bead targets of different compressive strengths: Outcome sensitivity and scalingcitations
- 2007Rotational Disruption of Gravitational Aggregates with Cohesive Strength
Places of action
Organizations | Location | People |
---|
article
Low-speed impact simulations into regolith in support of asteroid sampling mechanism design I: Comparison with 1-g experiments
Abstract
This study is carried out in the framework of sample-return missions to asteroids that use a low-speed projectile as the primary component of its sampling mechanism (e.g., JAXA's Hayabusa and Hayabusa2 missions). We perform numerical simulations of such impacts into granular materials using different projectile shapes under Earth's gravity. We then compare the amounts of ejected mass obtained in our simulations against what was found in experiments that used similar setups, which allows us to validate our numerical approach. We then investigate the sensitivity of various parameters involved in the contacts between grains on the amount of mass that is ejected. For the targets, we consider 2 different monodisperse grain-diameter sizes: 5 mm and 3 mm. The impact speed of the projectile is 11 m s<SUP>-1</SUP>, and is directed downward, perpendicular to the surface of the targets. Using an implementation of the soft-sphere discrete element method (SSDEM) in the N-body gravity tree code pkdgrav, previously validated in the context of low-speed impacts into sintered glass bead agglomerates, we find a noticeable dependence of the amount of ejected mass on the projectile shape. As found in experiments, in the case of the larger target grain size (5 mm), a conically shaped projectile ejects a greater amount of mass than do projectiles of other shapes, including disks and spheres. We then find that numerically the results are sensitive to the normal coefficient of restitution of the grains, especially for impacts into targets comprising smaller grains (3 mm). We also find that static friction plays a more important role for impacts into targets comprising the larger grains. As a preliminary demonstration, one of these considered setups is simulated in a microgravity environment. As expected, a reduction in gravity increases both the amount of ejected mass and the timescale of the impact process. A dedicated quantitative study in microgravity is the subject of future work. We also plan to study other aspects of the ejection process such as velocity distributions and crater properties, and to adapt our methodology to the conditions of sampling mechanisms included in specific mission designs.