People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Leonetti, Davide
Eindhoven University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024A two-scale approach for assessing the role of defects in fatigue crack nucleation in metallic structurescitations
- 2024Prediction of fatigue crack paths including crack-face friction for an inclined edge crack subjected to mixed mode loadingcitations
- 2024Experimental investigation on the fatigue and fracture properties of a fine pearlitic rail steelcitations
- 2024Experimental evaluation of the fatigue notch factor in as-built specimens produced by Wire and Arc Additive Manufacturingcitations
- 2023Rotating bending fatigue behaviour and quasi-static tensile properties of Wire Arc Additively Manufactured 308L stainless steelcitations
- 2023Rotating bending fatigue behaviour and quasi-static tensile properties of Wire Arc Additively Manufactured 308L stainless steelcitations
- 2023Fracture behavior and mechanical characterization of R350HT rail steelcitations
- 2023The cross-sectional resistance of square and rectangular hollow steel sections loaded by bending moment and shear forcecitations
- 2022An experimental investigation on the net cross-section failure of damaged plates containing holescitations
- 2022An experimental investigation on the net cross-section failure of damaged plates containing holescitations
- 2021Fracture mechanics based fatigue life prediction for a weld toe crack under constant and variable amplitude random block loading—Modeling and uncertainty estimationcitations
- 2020Rivet clamping force of as-built hot-riveted connections in steel bridgescitations
- 2019Simplified constraint-modified failure assessment procedure for structural components containing defects
- 2017Compatibility of S-N and crack growth curves in the fatigue reliability assessment of a welded steel joint
- 2016Fatigue partial factors for bridges
Places of action
Organizations | Location | People |
---|
article
Experimental evaluation of the fatigue notch factor in as-built specimens produced by Wire and Arc Additive Manufacturing
Abstract
The notch Effects created by the rough surface of as-built Wire and Arc Additive Manufactured (WAAMed) products may negatively affect the fatigue resistance. This can be prevented by post-production treatments such as machining, but it implies an additional manufacturing step involving costs and time. There is a need to quantify the actual notch Effects of as-built surfaces of WAAMed parts, which can be accomplished via a parameter called fatigue notch factor. This paper focuses on the experimental evaluation of the fatigue notch factor in as-built WAAMed specimens made of AISI 308LSi stainless steel tested with a load ratio of 0.1. Two test series consisting of as-built and machined plain specimens, respectively, have been tested by applying the load perpendicularly to the deposition plane. In this loading configuration, the as-built surface can be regarded as made of periodic notches. A dedicated specimen geometry based on the indications given in the International Standard ASTM E466-21 has been used for the tests. This innovative design allows to induce crack initiation in the periodic notches of the as-built surface while preventing the final fatigue fracture at the first notch root. After the fatigue tests, the fracture surfaces resulting from some specimens have been analyzed using the Scanning Electron Microscope (SEM) to determine the location of crack initiation. As a result of the study, the S-N curves in terms of nominal stress range have been derived and the fatigue notch factor has been determined.