People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Maljaars, Johan
Eindhoven University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2024Fatigue behaviour of root crack in stiffener-to-deck plate weld at crossbeam of orthotropic bridge deckscitations
- 2024Fatigue behaviour of root crack in stiffener-to-deck plate weld at crossbeam of orthotropic bridge deckscitations
- 2024Numerical simulations of residual stress formation and its effect on fatigue crack propagation in a fillet welded T-jointcitations
- 2024A two-scale approach for assessing the role of defects in fatigue crack nucleation in metallic structurescitations
- 2024Prediction of fatigue crack paths including crack-face friction for an inclined edge crack subjected to mixed mode loadingcitations
- 2024Experimental evaluation of the fatigue notch factor in as-built specimens produced by Wire and Arc Additive Manufacturingcitations
- 2024Pyrolysis modelling of insulation material in coupled fire-structure simulationscitations
- 2023A pyrolysis model for steel-insulation sandwich building façade systems under firecitations
- 2022Safety assessment for capacity design of bolted steel connections in tensioncitations
- 2022Uncertainty quantification of the failure assessment diagram for flawed steel components in BS 7910:2019citations
- 2021Fracture mechanics based fatigue life prediction for a weld toe crack under constant and variable amplitude random block loading—Modeling and uncertainty estimationcitations
- 2021A cohesive XFEM model for simulating fatigue crack growth under various load conditionscitations
- 2020Preload loss of stainless steel bolts in aluminium plated slip resistant connectionscitations
- 2020Preload loss of stainless steel bolts in aluminium plated slip resistant connectionscitations
- 2020Rivet clamping force of as-built hot-riveted connections in steel bridgescitations
- 2020Influence of material anisotropy on fatigue crack growth in C–Mn steels of existing structurescitations
- 2019Simplified constraint-modified failure assessment procedure for structural components containing defects
- 2019Added value of regular in-service visual inspection to the fatigue reliability of structural details in steel bridges
- 2018Use of HSS and VHSS in steel structures in civil and offshore engineeringcitations
- 2017Compatibility of S-N and crack growth curves in the fatigue reliability assessment of a welded steel joint
- 2017Bending-shear interaction of steel I-shaped cross-sections
- 2016The effect of low temperatures on the fatigue crack growth of S460 structural steelcitations
- 2016Fire exposed steel columns with a thermal gradient over the cross-sectioncitations
- 2016Numerical investigation into strong axis bending-shear interaction in rolled I-shaped steel sections
- 2016Fatigue partial factors for bridges
- 2014Failure and fatigue life assessment of steel railway bridges with brittle material
Places of action
Organizations | Location | People |
---|
article
Experimental evaluation of the fatigue notch factor in as-built specimens produced by Wire and Arc Additive Manufacturing
Abstract
The notch Effects created by the rough surface of as-built Wire and Arc Additive Manufactured (WAAMed) products may negatively affect the fatigue resistance. This can be prevented by post-production treatments such as machining, but it implies an additional manufacturing step involving costs and time. There is a need to quantify the actual notch Effects of as-built surfaces of WAAMed parts, which can be accomplished via a parameter called fatigue notch factor. This paper focuses on the experimental evaluation of the fatigue notch factor in as-built WAAMed specimens made of AISI 308LSi stainless steel tested with a load ratio of 0.1. Two test series consisting of as-built and machined plain specimens, respectively, have been tested by applying the load perpendicularly to the deposition plane. In this loading configuration, the as-built surface can be regarded as made of periodic notches. A dedicated specimen geometry based on the indications given in the International Standard ASTM E466-21 has been used for the tests. This innovative design allows to induce crack initiation in the periodic notches of the as-built surface while preventing the final fatigue fracture at the first notch root. After the fatigue tests, the fracture surfaces resulting from some specimens have been analyzed using the Scanning Electron Microscope (SEM) to determine the location of crack initiation. As a result of the study, the S-N curves in terms of nominal stress range have been derived and the fatigue notch factor has been determined.