People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Larrosa, Nicolas O.
University of Bristol
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024Corrosion mechanisms of plasma welded Nickel aluminium bronze immersed in seawatercitations
- 2024Modelling the Effect of Residual Stresses on Damage Accumulation Using a Coupled Crystal Plasticity Phase Field Fracture Approach
- 2024Cohesive zone modelling of hydrogen environmentally assisted cracking for double cantilever beam samples of 7xxx aluminium alloys
- 2023The role of corrosion pit topography on stress concentration
- 2023Investigation of the effect of pitting corrosion on the fatigue strength degradation of structural steel using a short crack modelcitations
- 2023Investigation of the effect of pitting corrosion on the fatigue strength degradation of structural steel using a short crack modelcitations
- 2022Development of a microstructural cohesive zone model for intergranular hydrogen environmentally assisted crackingcitations
- 2022Development of a microstructural cohesive zone model for intergranular hydrogen environmentally assisted crackingcitations
- 2022Sizing limitations of ultrasonic array images for non-sharp defects and their impact on structural integrity assessmentscitations
- 2022The Role of Surface Roughness on Pitting Corrosion Initiation in Nickel Aluminium Bronzes in Aircitations
- 2020Pit to crack transition and corrosion fatigue lifetime reduction estimations by means of a short crack microstructural modelcitations
- 2020Pit to crack transition and corrosion fatigue lifetime reduction estimations by means of a short crack microstructural modelcitations
- 2020Hydrogen environmentally assisted cracking during static loading of AA7075 and AA7449citations
- 2020Hydrogen environmentally assisted cracking during static loading of AA7075 and AA7449citations
- 2018Linking microstructure and processing defects to mechanical properties of selectively laser melted AlSi10Mg alloycitations
- 2018Corrosion-fatiguecitations
- 2017A transferability approach for reducing excessive conservatism in fracture assessmentscitations
- 2016Ductile fracture modelling and J-Q fracture mechanicscitations
- 2016Blunt defect assessment in the framework of the failure assessment diagramcitations
- 2015Characterization of the effect of notch bluntness on hydrogen embrittlement and fracture behavior using fe analyses
- 2015Fatigue life estimation of pitted specimens by means of an integrated fracture mechanics approachcitations
Places of action
Organizations | Location | People |
---|
document
Investigation of the effect of pitting corrosion on the fatigue strength degradation of structural steel using a short crack model
Abstract
Steel support structures of offshore wind turbines (jackets and monopiles) undergo both fatigue and corrosion damage, impacting their lifetime. This paper investigates how pitting corrosion, caused by being exposed to the marine environment, affects the fatigue strength of structural steel. A short fatigue crack model is used to estimate the minimum required applied load amplitude which causes a growing crack emanating from the bottom of a semi-elliptical pit. Pit growth rate data, reported in literature, is employed to update the pit size and its sharpness at each time step. The modelling results show the fatigue strength degradation as a function of the exposure time to the corrosive environment. As exposure time increases, it is observed that degradation happens more quickly in the early years followed by a gradually decreasing degradation rate of the fatigue strength in the following years.