People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Oterkus, Selda
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2023Fatigue crack prediction in ceramic material and its porous media by using peridynamicscitations
- 2022Peridynamic analysis to investigate the influence of microstructure and porosity on fatigue crack propagation in additively manufactured Ti6Al4Vcitations
- 2022Simulation stage-based seabed pre-trenching technique for steel catenary riser touchdown fatigue analysis
- 2022Titanium alloy corrosion fatigue crack growth rates prediction: Peridynamics based numerical approachcitations
- 2022Fracture simulation of viscoelastic membranes by ordinary state-based peridynamicscitations
- 2022Peridynamic modelling of propagation of cracks in photovoltaic panelscitations
- 2022Titanium alloy corrosion fatigue crack growth rates predictioncitations
- 2020Investigation of the effect of shape of inclusions on homogenized properties by using peridynamicscitations
- 2020An in-depth investigation of critical stretch based failure criterion in ordinary state-based peridynamicscitations
- 2018Implementation of peridynamic beam and plate formulations in finite element frameworkcitations
Places of action
Organizations | Location | People |
---|
article
Peridynamic modelling of propagation of cracks in photovoltaic panels
Abstract
Photovoltaics (PV) is a method of converting solar energy into direct current electricity using semiconducting materials that exhibit the photovoltaic effect. Cracking in PV panels can cause performance degradation in PV panels. In this study, a new computational methodology, peridynamics is utilised to investigate the cracking behaviour in PV panels. Peridynamics is based on integro-differential equations, and it is a very suitable technique to model crack initiation and propagation. Majority of PV panels are based on silicon solar cell technology. Therefore, polycrystalline material behaviour of silicon is explicitly considered in the model. The numerical framework can be used to support the design of high-performant, long-lasting and fracture-resistant PV panels. The results can also be used to produce practical guidelines aimed to facilitate the decision of PV module rejection due to cracking during production.