People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mehta, Kush P.
University of Strathclyde
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (33/33 displayed)
- 2024A novel approach for zero material loss (zero flash) and uniform cross-section during friction stir welding of dissimilar thickness Cu and Al alloys
- 2023Novel manufacturing of multi-material component by hybrid friction stir channelingcitations
- 2022Dissimilar friction stir welding of Al to non-Al metallic materials : An overviewcitations
- 2022Influence of copper plate positioning, zero tool offset, and bed conditions in friction stir welding of dissimilar Al-Cu alloys with different thicknessescitations
- 2022A review on friction stir-based channelingcitations
- 2022Microstructure evolution and mechanical properties of continuous drive friction welded dissimilar copper-stainless steel pipe jointscitations
- 2021Investigation of exit-hole repairing on dissimilar aluminum-copper friction stir welded jointscitations
- 2021Friction spot extrusion welding on dissimilar materials AA2024-T3 to AA5754-Ocitations
- 2021Corrigendum to ‟Effect of materials positioning on dissimilar modified friction stir clinching between aluminum 5754-O and 2024-T3 sheets” [Vacuum 178 (2020) 109445] (Vacuum (2020) 178, (S0042207X20302827), (10.1016/j.vacuum.2020.109445))
- 2021An overview on laser welding of metal foamscitations
- 2021Friction welding of dissimilar joints copper-stainless steel pipe consist of 0.06 wall thickness to pipe diameter ratiocitations
- 2021Applicability of Bobbin Tool Friction Stir Welding for Dissimilar Al-Mg Jointcitations
- 2021Fabrication and applications of fullerene-based metal nanocompositescitations
- 2021Processing and evaluation of dissimilar Al-SS friction welding of pipe configurationcitations
- 2021Investigation on stability of weld morphology, microstructure of processed zones, and weld quality assessment for hot wire gas tungsten arc welding of electrolytic tough pitch coppercitations
- 2021Magnetic pulse welding
- 2020Effect of shoulder features during friction spot extrusion welding of 2024-T3 to 6061-T6 aluminium alloyscitations
- 2020Effect of materials positioning on dissimilar modified friction stir clinching between aluminum 5754-O and 2024-T3 sheetscitations
- 2020Processing of copper by keyhole gas tungsten arc welding for uniformity of weld bead geometrycitations
- 2020Ultra-thin friction stir welding on Aluminum alloycitations
- 2019Introduction
- 2019Machining of shape memory alloys
- 2019A review on friction-based joining of dissimilar aluminum-steel jointscitations
- 2019Welding and joining of shape memory alloys
- 2019Processing of Shape Memory Alloys
- 2019Conventional and cooling assisted friction stir welding of AA6061 and AZ31B alloyscitations
- 2019Numerical modelling on cooling assisted friction stir welding of dissimilar Al-Cu jointcitations
- 2018Hybridization of filler wire in multi-pass gas metal arc welding of SA516 Gr70 carbon steelcitations
- 2018An outlook on comparison of hybrid welds of different root pass and filler pass of FCAW and GMAW with classical welds of similar root pass and filler passcitations
- 2017Hybrid approaches of assisted heating and cooling for friction stir welding of copper to aluminum jointscitations
- 2017Influence of tool pin design on properties of dissimilar copper to aluminum friction stir weldingcitations
- 2016Effects of tilt angle on the properties of dissimilar friction stir welding copper to aluminumcitations
- 2016A review on dissimilar friction stir welding of copper to aluminumcitations
Places of action
Organizations | Location | People |
---|
article
An overview on laser welding of metal foams
Abstract
<p>Due to the manifold properties of porous materials in general, and metal foams in particular, they are increasingly used in industrial, structural and functional applications. The properties of metal foams depend on: chemical composition, metallurgical aspects, processing morphology (the type of porosity: open or closed), amount of porosity, cells size and shape. There are challenges and difficulties encountered in welding and bonding metal foams from wider use in the production of complex-shaped components. Some of the problems that associate with welding processes in metal foams are reduction in mechanical properties, intermetallic compound formation, microstructural inhomogeneity and low fatigue strength. More complicated challenges are envisaged during welding metal foams with other dissimilar materials. Laser welding technologies seem to be the most promising joining techniques. This paper presents an overview on laser welding and joining techniques involving metal foams based on laser technology in similar and dissimilar combinations, with and without filler metal. The discussion on laser welding of metal foams is presented keeping the focus on CuZn open-cell foams, lotus type porous iron, foam-filled steel sandwich beams, aluminum foam cores inside a hollow profile and sandwich panels.</p>