People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Elmahdy, Ahmed
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2023Impact-dynamic properties of aromatic hyperbranched polyester/RTM6 epoxy nanocompositescitations
- 2022In-depth analysis of the high strain rate compressive behavior of RTM6 epoxy using digital image correlationcitations
- 2021Fracture mechanisms in flat and cylindrical tensile specimens of TRIP-TWIP β-metastable Ti-12Mo alloycitations
- 2021Effect of strain rate and silica filler content on the compressive behavior of RTM6 epoxy-based nanocompositescitations
- 2020A cohesive-based method to bridge the strain rate effect and defects of RTM-6 epoxy resin under tensile loadingcitations
- 2020Mechanical behavior of basalt and glass textile composites at high strain rates : a comparisoncitations
- 2020Comparison between the mechanical behavior of woven basalt and glass epoxy composites at high strain ratescitations
- 2020Aromatic Hyperbranched Polyester/RTM6 Epoxy Resin for EXTREME Dynamic Loading Aeronautical Applicationscitations
- 2019Evaluation of the hydrogen embrittlement susceptibility in DP steel under static and dynamic tensile conditionscitations
- 2019Tensile behavior of woven basalt fiber reinforced composites at high strain ratescitations
- 2018Effect of silica nanoparticles on the compressive behavior of RTM6 epoxy resin at different strain rates
- 2018Tensile behavior of basalt fiber reinforced composites at high strain rates
- 2018The use of 2D and 3D high-speed digital image correlation in full field strain measurements of composite materials subjected to high strain ratescitations
- 2018Compressive behavior of epoxy resin filled with silica nanoparticles at high strain rate
- 2018The Use of 2D and 3D High-Speed Digital Image Correlation in Full Field Strain Measurements of Composite Materials Subjected to High Strain Ratescitations
- 2017High strain rate testing of fibre-reinforced composites
Places of action
Organizations | Location | People |
---|
article
A cohesive-based method to bridge the strain rate effect and defects of RTM-6 epoxy resin under tensile loading
Abstract
The objective of the present work is to investigate the relationship between the strain rate effect of RTM-6 epoxy resin and the presence of defects under tensile loading by means of a numerical modelling approach. High-strain-rate tensile tests were conducted using a split Hopkinson tension bar (SHTB) test facility. Axial strains were locally measured within the gauge section of the sample using a high-speed stereo digital image correlation technique (high-speed 3D DIC). Additionally, quasi-static tensile tests were conducted to study the tensile behaviour over a wide range of strain rates. The dynamic experimental results showed an increase in strength and modulus, but also a noticeable reduction in the failure strain, compared to the quasi-static tests. Latter observation may be attributed to the effect of defects present in brittle polymeric materials. Defects lead to the generation of microcracks before the failure of samples, as confirmed by experimental observations. Two different cohesive models were therefore created to replicate the constitutive model of the material with and without defects. Through an inverse method fitting, the failure mechanism of cohesive elements was calibrated and the tensile behaviour at various strain rates was replicated.The results showed that the strain rate effect can be accurately simulated by implementing cohesive elements that mimic the presence of defects. The number of simulated defects that allows an accurate reproduction of the behaviour depends on the strain rate level and the material appears more sensitive to defects at high strain rates. Therefore, the present work validates the assumption of the relationship between strain rate effect and defects for brittle polymeric materials.