People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
De Jesus, Abílio M. P.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2023A Predictive Methodology for Temperature, Heat Generation and Transfer in Gigacycle Fatigue Testingcitations
- 2023Experimental parametric investigation on the behavior of adhesively bonded CFRP/steel jointscitations
- 2022Fatigue crack growth modelling by means of the strain energy density-based Huffman model considering the residual stress effectcitations
- 2022Fracture Characterization of Hybrid Bonded Joints (CFRP/Steel) for Pure Mode Icitations
- 2022Automation of Property Acquisition of Single Track Depositions Manufactured through Direct Energy Depositioncitations
- 2022A review of fatigue damage assessment in offshore wind turbine support structurecitations
- 2022Tensile Properties of As-Built 18Ni300 Maraging Steel Produced by DEDcitations
- 2021Probabilistic S-N curves for CFRP retrofitted steel detailscitations
- 2021Low-cycle fatigue modelling supported by strain energy density-based Huffman model considering the variability of dislocation densitycitations
- 2020Multiaxial fatigue assessment of S355 steel in the high-cycle region by using Susmel's criterioncitations
- 2020Study of the Fatigue Crack Growth in Long-Term Operated Mild Steel under Mixed-Mode (I plus II, I plus III) Loading Conditionscitations
- 2018Energy response of S355 and 41Cr4 steel during fatigue crack growth processcitations
Places of action
Organizations | Location | People |
---|
document
Multiaxial fatigue assessment of S355 steel in the high-cycle region by using Susmel's criterion
Abstract
Multiaxial fatigue is frequently present on engineering structures and is the cause of many mechanical failures. However, multiaxial fatigue analysis is full of questions and different points of view. Thus, throughout this study, Susmel's criterion, a recent multiaxial fatigue damage model also known as the Modified Wohler Curve Method, is presented, explained and assessed. Experimental data of axial, torsional and proportional (axial+torsional) fatigue tests conducted on S355 structural steel and under different stress ratios were analysed and evaluated according to this model. Mean fatigue design curves for each loading condition were obtained and plotted in the high cycle fatigue region. Finally, the ability of Susmel's criterion to assess the multiaxial fatigue behaviour of S355 steel in the high cycle region was evaluated by determining the error index between the theoretically estimated and the experimental fatigue damage. Susmel's model was found to be adequate to describe the fatigue behaviour of the steel under study in high cycle region. (C) 2020 The Authors. Published by Elsevier B.V.