People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tavares, Pjs
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2019Oxidative Treatment of Multi-Walled Carbon Nanotubes and its Effect on the Mechanical and Electrical Properties of Green Epoxy based Nano-Compositescitations
- 2016Mixed-mode fatigue crack propagation rates of current structural steels applied for bridges and towers construction
- 2016Fatigue crack growth behaviour of the 6082-T6 aluminium using CT specimens with distinct notchescitations
- 2016Crack Closure Effects on Fatigue Crack Propagation Rates: Application of a Proposed Theoretical Modelcitations
- 2015Fatigue life prediction based on crack growth analysis using an equivalent initial flaw size model: Application to a notched geometrycitations
Places of action
Organizations | Location | People |
---|
document
Oxidative Treatment of Multi-Walled Carbon Nanotubes and its Effect on the Mechanical and Electrical Properties of Green Epoxy based Nano-Composites
Abstract
Oxidative treatment of Multi-Walled Carbon Nanotubes (MWCNT's) was done by chemical functionalization by using the mixture acid, which is a mixture of sulfuric acid (H2SO4) and nitric acid (HNO3). Functionalization was governed by four parameters namely mixture acid concentration, temperature(T), time of heating(t) and the amount of MWCNTs used. After functionalization, functionalized MWCNT's were then diluted in dimethylformamide (DMF) to analyse the percentage of soluble MWCNT's. Also, by increasing the time of functionalization, it was observed that overall yield decreases but the percentage of functionalized product inside the yield quantity remains the same. Material characterization was also carried out at several steps to validate this theory. Chemical functionalization of MWCNT's is generally significant for the manufacturing of polymerbased nanocomposites. Oxidative treatment enhances the dispersion and interfacial bonding within the epoxy matrix. In this research work, a bio-based epoxy resin was selected for the manufacturing of nanocomposite samples with various concentrations of pristine and functionalized MWCNTs. Mechanical and electrical characterization was finally carried out to increase the knowledge on the interaction of MWCNT's with the selected green epoxy matrix system and their influence on the original properties of the resin. (C) 2019 The Authors. Published by Elsevier B.V.