People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bisht, Anuj
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2024Effect of growth temperature on the microstructure and properties of epitaxial MoS2 monolayers grown by metalorganic chemical vapor depositioncitations
- 2023Solid-solution and precipitation softening effects in defect-free faceted nickel-iron nanoparticlescitations
- 2021The impact of alloying on defect-free nanoparticles exhibiting softer but tougher behaviorcitations
- 2019Characterisation of additively manufactured metallic stentscitations
- 2019Improvements of machinability of aerospace-grade Inconel alloys with ultrasonically assisted hybrid machiningcitations
- 2018Effect of hybrid machining on structural integrity of aerospace-grade materialscitations
Places of action
Organizations | Location | People |
---|
document
Characterisation of additively manufactured metallic stents
Abstract
This paper focuses on microstructural characterisation of metallic stents produced with additive manufacturing, a promising technique to deliver patient-specific stents. A 316L stainless steel tube, manufactured by selective laser melting (SLM), and a 316L stainless steel stent were investigated. Specimens were prepared for microstructural studies through sectioning, mounting, grinding and metallurgical polishing procedures. Microstructures were examined employing a JEOL 7100F scanning electron microscope, with simultaneous elemental analysis using energy dispersive x-ray spectroscopy (EDS) and orientation analysis with electron backscatter diffraction. The obtained results showed that a center of the selective laser melted (SLMed) tube had a columnar and coarse grain microstructure, with high-angle grain boundaries. The EDS analysis confirmed that the composition of the SLMed tube were similar to those of commercial stent, but with some differences in weight fractions of alloy elements.