Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kotoul, Michal

  • Google
  • 2
  • 6
  • 12

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2016Assessment of crack-related problems in layered ceramics using the finite fracture mechanics and coupled stress-energy criterion12citations
  • 2013Influence of the residual stresses on the crack deflection in ceramic laminatescitations

Places of action

Chart of shared publication
Martin, Eric
1 / 16 shared
Leguillon, Dominique
1 / 26 shared
Bermejo, Raúl
2 / 38 shared
Ševeček, Oldřich
1 / 6 shared
Profant, Tomas
1 / 1 shared
Sevecek, Oldrich
1 / 2 shared
Chart of publication period
2016
2013

Co-Authors (by relevance)

  • Martin, Eric
  • Leguillon, Dominique
  • Bermejo, Raúl
  • Ševeček, Oldřich
  • Profant, Tomas
  • Sevecek, Oldrich
OrganizationsLocationPeople

article

Assessment of crack-related problems in layered ceramics using the finite fracture mechanics and coupled stress-energy criterion

  • Martin, Eric
  • Leguillon, Dominique
  • Bermejo, Raúl
  • Ševeček, Oldřich
  • Kotoul, Michal
Abstract

<p>This contribution gives an overview of different fracture-mechanics issues occurring in layered ceramics designed with internal compressive residual stresses (such as the edge cracking, crack arrest by the compressive layer or crack deflection/bifurcation) and proposes an effective approach to describe the initiation and/or propagation of cracks in such materials. The finite fracture mechanics (FFM) theory and the coupled stress-energy criterion (CC) are discussed and applied to understand their fracture behavior. The stress-energy coupled criterion is based on the tensile strength and toughness data of investigated material and it does not contain any adjustable parameter, which is its indisputable advantage. It could thus (in the considered brittle materials) predict both crack initiation and crack propagation under consideration of both thermal and external mechanical loading. A case study is investigated, where edge cracking in compressive layers can be predicted as a function of the thickness of the compressive layer and the magnitude of residual stresses. Another case study concerns the onset of a crack in a notched sample of a layered ceramic submitted to bending. The propagation of the crack through the ceramic laminate is studied as a function of the volume ratio of particular material components and corresponding magnitude of residual stresses in both compressive and tensile layers. Under certain combination of residual stress and layered architecture, the CC predicts crack arrest in the internal compressive layer of the laminate in accordance with experimental observations under similar loading conditions.</p>

Topics
  • impedance spectroscopy
  • theory
  • crack
  • strength
  • layered
  • tensile strength
  • ceramic
  • fracture behavior