Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Cox, M. J.

  • Google
  • 3
  • 10
  • 75

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2019An experimental methodology to characterise post-necking behaviour and quantify ductile damage accumulation in isotropic materials37citations
  • 2019Uniaxial compression of single crystal and polycrystalline tantalum27citations
  • 2016Experimental techniques for ductile damage characterisation11citations

Places of action

Chart of shared publication
Davies, C. M.
2 / 17 shared
Sancho, Alexander
3 / 8 shared
Hooper, P. A.
3 / 5 shared
Dear, J. P.
3 / 6 shared
Cartwright, T.
2 / 2 shared
Avraam, P.
1 / 4 shared
Millett, J. C. F.
1 / 25 shared
Whiteman, G.
1 / 14 shared
Case, S.
1 / 5 shared
Aldrich-Smith, G. D.
1 / 1 shared
Chart of publication period
2019
2016

Co-Authors (by relevance)

  • Davies, C. M.
  • Sancho, Alexander
  • Hooper, P. A.
  • Dear, J. P.
  • Cartwright, T.
  • Avraam, P.
  • Millett, J. C. F.
  • Whiteman, G.
  • Case, S.
  • Aldrich-Smith, G. D.
OrganizationsLocationPeople

article

Experimental techniques for ductile damage characterisation

  • Davies, C. M.
  • Aldrich-Smith, G. D.
  • Sancho, Alexander
  • Hooper, P. A.
  • Dear, J. P.
  • Cartwright, T.
  • Cox, M. J.
Abstract

Ductile damage in metallic materials is caused by the nucleation, growth and coalesce of voids and micro-cracks in the metal matrix when it is subjected to plastic strain. A considerable number of models have been proposed to represent ductile failure focusing on the ultimate failure conditions; however, only some of them study in detail the whole damage accumulation process. The aim of this work is to review experimental techniques developed by various authors to measure the accumulation of ductile damage under tensile loads. The measurement methods reviewed include: stiffness degradation, indentation, microstructure analysis, ultrasonic waves propagation, X-ray tomography and electrical potential drop. Stiffness degradation and indentation techniques have been tested on stainless steel 304L hourglass-shaped samples. A special interest is placed in the Continuum Damage Mechanics approach (CDM) as its equations incorporate macroscopic parameters that can represent directly the damage accumulation measured in the experiments. The other main objective lies in identifying the strengths and weaknesses of each technique for the assessment of materials subjected to different strain-rate and temperature conditions.

Topics
  • impedance spectroscopy
  • microstructure
  • polymer
  • stainless steel
  • experiment
  • tomography
  • crack
  • strength
  • ultrasonic
  • void