People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pini, Tommaso
Sapienza University of Rome
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024A periodic micromechanical model for the rate- and temperature-dependent behavior of unidirectional carbon fiber-reinforced PVDFcitations
- 2021Deformation and failure kinetics of polyvinylidene fluoride: Influence of crystallinitycitations
- 2021Deformation and failure kinetics of polyvinylidene fluoride: Influence of crystallinitycitations
- 2019Damage mechanisms in a toughened acrylic resincitations
- 2018Fracture toughness of acrylic resinscitations
- 2018Matrix toughness transfer and fibre bridging laws in acrylic resin based CF compositescitations
- 2018Fracture toughness of acrylic resins: Viscoelastic effects and deformation mechanismscitations
- 2017Fracture initiation and propagation in unidirectional CF composites based on thermoplastic acrylic resinscitations
- 2016Time dependent fracture behaviour of a carbon fibre composite based on a (rubber toughened) acrylic polymercitations
- 2016Time dependent fracture behaviour of a carbon fibre composite based on a (rubber toughened) acrylic polymercitations
Places of action
Organizations | Location | People |
---|
article
Time dependent fracture behaviour of a carbon fibre composite based on a (rubber toughened) acrylic polymer
Abstract
<p>The fracture behaviour of continuous carbon fibre laminates based on plain and rubber-toughened acrylic resins was investigated focusing on the influence of rate and temperature. The tensile behaviour of the two matrices was also characterized for subsequent analysis. In all cases the experimental window was extended by applying the timeerature equivalence postulate. Fracture toughness at varying crack propagation rate turned out to have opposite trends for the two matrices. For the plain acrylic resin, a monotonically increasing trend with crack rate was found in agreement with viscoelastic fracture theories. For the rubber-toughened resin the change of the failure mechanisms occurring at the crack tip, resulted in a monotonically decreasing trend for increasing crack rate. Rate and temperature effects were analysed in terms of volumetric strain during tensile tests. Composites turned out to be more resistant to crack propagation than the relevant matrices in both cases. Delamination fracture toughness turned out to have the same dependence on crack rate for rubber toughened matrix only. For composites based on the plain resin, no effect of crack rate on delamination fracture toughness was observed.</p>