Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wawulska-Marek, P.

  • Google
  • 2
  • 7
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2017Evaluation of Cooling Time of SiC Ceramic Mold Using Thermal Imaging Cameracitations
  • 2016Selecting key parameters of the green pellets and lightweight ceramic proppants for enhanced shale gas exploitation7citations

Places of action

Chart of shared publication
Koralnik, Mateusz
1 / 9 shared
Sitek, Ryszard
1 / 38 shared
Wiśniewski, Paweł
2 / 26 shared
Cygan, Rafał
1 / 5 shared
Mizera, Jarosław
2 / 113 shared
Małek, Marcin
1 / 14 shared
Szymańska, Joanna
1 / 8 shared
Chart of publication period
2017
2016

Co-Authors (by relevance)

  • Koralnik, Mateusz
  • Sitek, Ryszard
  • Wiśniewski, Paweł
  • Cygan, Rafał
  • Mizera, Jarosław
  • Małek, Marcin
  • Szymańska, Joanna
OrganizationsLocationPeople

document

Selecting key parameters of the green pellets and lightweight ceramic proppants for enhanced shale gas exploitation

  • Wiśniewski, Paweł
  • Małek, Marcin
  • Szymańska, Joanna
  • Mizera, Jarosław
  • Wawulska-Marek, P.
Abstract

Ceramic proppants are classified as propping agents commonly used for the shale gas industry. Fractures created in shale deposits due to high fluid pressure (hydraulic fracturing) have to be propped allowing unconventional gas migration to a borehole. Ceramic granules located in the newly created fissures act as a prop so that the shale gas can flow up the well. It occurs if the proppants can resist the huge forces of the closing fractures at high temperature. Due to these strict geological conditions and processing requirements the proppants have to be characterized by proper physico- mechanical properties. The aim of this research was to study, compare and select the ceramic proppants characterized by the most appropriate parameters. The investigation relates to the industrial granules obtained by the mechanical granulation method and afterwards sintered which were confronted and analyzed. Utility of the proppants was estimated basing on bulk density and roundness coefficient. Structure, morphology and chemical composition of the samples were determined by the Scanning Electron Microscopy (SEM) with Energy Dispersive Spectroscopy (EDS). The sintered proppants were also characterized with X-Ray Tomography, turbidity and solubility in acid additionally. The crucial parameter as mechanical strength was established during the propping samples subjection to the crush tests. The obtained outcomes prove that chemical composition, pores distribution, grain size and mechanical strength influence the integrity of created fractures and therefore the extraction of the unconventional gas out of the well.

Topics
  • density
  • pore
  • morphology
  • grain
  • grain size
  • scanning electron microscopy
  • extraction
  • tomography
  • strength
  • chemical composition
  • Energy-dispersive X-ray spectroscopy
  • ceramic