People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Re, Mayall
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Mechanical properties of conventional versus microwave-polymerized denture base acrylic resins.
Abstract
<h4>Statement of problem</h4>New denture base acrylic resins have been introduced that are specifically formulated for microwave polymerization. Microwave polymerization is a time-efficient procedure, but few studies have evaluated how these new acrylic resin formulations compare with conventionally processed acrylic resins.<h4>Purpose</h4>The purpose of this in vitro study was to compare the stiffness and strength of denture base acrylic resins formulated for microwave polymerization with conventionally processed acrylic resin.<h4>Material and methods</h4>Rectangular beams were fabricated from 2 microwave-polymerized denture base acrylic resins, microwave-specific resin (Nature-Cryl MC), resin with the option of microwave polymerization (Diamond D), and a conventionally processed resin as a control (Lucitone 199). Specimens (n=10) were stored in water for 1 week and subjected to a 3-point bend test to determine the flexural modulus (stiffness) and flexural strength before (initial properties) or after 120 000 load cycles. The load cycles, conducted between 5 and 25 N at 2 Hz, simulated 6 months of mastication. Data were analyzed by using 2-way ANOVA, followed by pairwise comparisons (α=.05).<h4>Results</h4>The initial flexural modulus (mean ±standard deviation) was conventionally processed resin, 2.65 ±0.33 GPa; microwave-specific resin, 3.01 ±0.20 GPa; and microwave-option resin, 2.63 ±0.04 GPa. After load cycling, the mean flexural modulus was conventionally processed resin, 2.34 ±0.32 GPa; microwave-specific resin, 2.69 ±0.20 GPa; and microwave-option resin, 1.96 ±0.11 GPa. The initial flexural strength was conventionally processed resin, 77.6 ±11.0 MPa; microwave-specific resin, 83.6 ±3.5 MPa; and microwave-option resin, 78.9 ±2.6 MPa. After load cycling, the mean flexural strength was conventionally processed resin, 68.7 ±9.0 MPa; microwave-specific resin, 73.3 ±3.3 MPa; and microwave-option resin, 65.5 ±3.5 MPa. Resin and loading state significantly affected the stiffness and strength (P<.01); the interaction resin×state was not significant (P≥.558).<h4>Conclusions</h4>Microwave-polymerized denture base acrylic resins were comparable in stiffness and strength with conventionally processed acrylic resin. All acrylic resins decreased in stiffness and strength after load cycling. The microwave-specific resin was significantly stiffer and stronger than the other denture base acrylic resins, initially and after 120 000 load cycles.