Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hamilton, Adam

  • Google
  • 2
  • 31
  • 182

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Comparison of the accuracy of implants placed with CAD-CAM surgical templates manufactured with various 3D printers54citations
  • 2018Group 2 ITI Consensus Report128citations

Places of action

Chart of shared publication
Herschdorfer, Laura
1 / 1 shared
Negreiros, William Matthew
1 / 2 shared
Gallucci, German O.
1 / 1 shared
Chart of publication period
2021
2018

Co-Authors (by relevance)

  • Herschdorfer, Laura
  • Negreiros, William Matthew
  • Gallucci, German O.
OrganizationsLocationPeople

article

Comparison of the accuracy of implants placed with CAD-CAM surgical templates manufactured with various 3D printers

  • Herschdorfer, Laura
  • Negreiros, William Matthew
  • Gallucci, German O.
  • Hamilton, Adam
Abstract

<p>STATEMENT OF PROBLEM: The fit of a 3D printed surgical template will directly influence the accuracy of guided implant surgery. Various 3D printing technologies are currently available with different levels of resolution and printing accuracy; however, how the different systems affect accuracy is unclear.</p><p>PURPOSE: The purpose of this in vitro study was to assess the effect of using various 3D printers for the fabrication of implant surgical templates and its effect on the definitive implant position compared with the planned implant position.</p><p>MATERIAL AND METHODS: A cone beam computed tomography scan from a partially edentulous patient and an extraoral digital scan of a dental cast obtained from the same patient were used. The digital imaging and communications in medicine and standard tessellation language (STL) files were imported to an implant planning software program and merged, and an implant was digitally positioned in the mandibular right first molar region. A surgical template was designed and exported as an STL file. Ten surgical templates were printed for each of the following groups: stereolithography (SLA) printing, PolyJet, and MultiJet. The region where the implant was planned was cut away from the cast onto which the surgical templates were seated, allowing a passive positioning of the implant through the template, which was held in place with polyvinyl siloxane material. A scan body was inserted in the implant, and the cast was scanned with a laboratory scanner. The STL files obtained from the definitive implant position were imported into an implant planning software program and registered with the planned implant position, allowing for a comparison between the planned and actual implant position. Mean deviations were measured for angle deviation, entry point offset, and apex offset. Data normality was tested by using the Shapiro-Wilk test. The Kruskal-Wallis test was used to determine whether the outcomes of angle deviation, apex offset, and entry offset were statistically different between groups (α=.05).</p><p>RESULTS: The median and interquartile range for the angle deviation (degrees) were 1.30 (0.62) for SLA; 1.15 (1.23) for Polyjet; and 1.10 (0.65) for Multijet. No statistically significant differences were found in the angular deviation among groups (χ2(2)=3.08, P=.21). The median and interquartile range for the entry offset and apex offset (mm) were 0.19 (0.16) and 0.36 (0.16) for SLA, respectively; 0.20 (0.13) and 0.34 (0.26) for Polyjet, respectively; and 0.23 (0.10) and 0.32 (0.08) for Multijet, respectively. Similarly, nonsignificant differences were found for entry point offset (χ2(2)=0.13, P=.94) and apex offset (χ2(2)=1.08, P=.58).</p><p>CONCLUSIONS: The different types of 3D printing technology used in this study did not appear to have a significant effect on the accuracy of guided implant surgery.</p>

Topics
  • impedance spectroscopy
  • collision-induced dissociation
  • computed tomography scan