People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Thuault, Anthony
Laboratoire de Mécanique et Procédés de Fabrication
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2023Microwave-assisted debinding of Al2O3 parts printed by stereolithographycitations
- 2022Fabrication of doped b-tricalcium phosphate bioceramics by robocasting for bone repair applications
- 2022Fabrication of doped b-tricalcium phosphate bioceramics by robocasting for bone repair applications
- 2021Effect of build orientation on the manufacturing process and the properties of stereolithographic dental ceramics for crown frameworkscitations
- 2021Fabrication of higher thermal stability doped β-tricalcium phosphate bioceramics by robocasting
- 2021Influence of dopants on thermal stability and densification of β-tricalcium phosphate powderscitations
- 2021Mechanical modelling of microwave sintering and experimental validation on an alumina powdercitations
- 2020Mechanical properties of thermally sprayed porous alumina coating by Vickers and Knoop indentationcitations
- 2020Mechanical properties of thermally sprayed porous alumina coating by Vickers and Knoop indentationcitations
- 2020Coupling additive manufacturing and microwave sintering: A fast processing route of alumina ceramicscitations
- 2020Fabrication of higher thermal stability doped β-tricalcium phosphate bioceramics by robocasting
- 2020Influence of microwave sintering on electrical properties of BCTZ lead free piezoelectric ceramicscitations
- 2020Experimental study and thermal mechanical modelling for alumina
- 2019Tribological behavior of composites fabricated by reactive SPS sintering in Ti‐Si‐C systemcitations
- 2018Unconventional Sintering of a Commercial Cemented WC-6Co Hardmetal
- 2017Comparison of conventional Knoop and Vickers hardness of ceramic materialscitations
- 2017Stereolithography ; Stereolithography: A new method for processing dental ceramics by additive computer-aided manufacturingcitations
- 2017Mechanical characterization of brittle materials using instrumented indentation with Knoop indentercitations
- 2015Damage Analysis of a Ferritic SiMo Ductile Cast Iron Submitted to Tension and Compression Loadings in Temperaturecitations
- 2015Comparison of Conventional and Microwave Sintering of Bioceramicscitations
- 2014Microwave sintering of large size pieces with complex shapecitations
- 2014Effects of microwave sintering on intrinsic defects concentrations in ZnO-based varistorscitations
- 2013Processing of reaction-bonded B4C-SiC composites in a single-mode microwave cavitycitations
- 2013Frittage micro-ondes en cavité monomode de biocéramiquescitations
- 2013Interrelation Between the Variety and the Mechanical Properties of Flax Fibrescitations
Places of action
Organizations | Location | People |
---|
article
Effect of build orientation on the manufacturing process and the properties of stereolithographic dental ceramics for crown frameworks
Abstract
Statement of problem: Stereolithography (SLA) ceramic crown frameworks are suitable for clinical use, but the impact of SLA build orientation has not been identified.Purpose: The purpose of this in vitro study was to investigate the effect of 3 build orientations on the physical and mechanical properties and the microstructure of SLA alumina dental ceramics.Material and methods: The physical and mechanical properties and microstructures of 3 different oriented SLA alumina ceramics (ZX, ZY, and XY) were evaluated by visual observation, hydrostatic weighing (n=10/group), Weibull analyses (n=30/group), scanning electron microscopy, 3-point flexural strength (n=30/group), fracture toughness (indentation, single-edge-V-notched-beam) (n=4/group), and Vickers hardness (n=15/group) testing. The hydrostatic weighing, 3-point flexural strength, fracture toughness, and Vickers hardness testing data were statistically analyzed (α=.05).Results: The minimum resting period of slurries between the polymerization of 2 layers was shorter for the ZY- and ZX-oriented specimens and increased with the layer surface. The density and Vickers hardness of the SLA-manufactured specimens were similar for all groups (P>.05). The 95% confidence intervals of the Weibull moduli of the ZX- and ZY-oriented specimens were higher than that of the XY-oriented specimens, with no overlap fraction. The ZY-oriented specimens displayed significantly higher 3-point flexural strength (P<.05) and fracture toughness as evaluated by the single-edge-V-notched-beam method than the ZX-oriented specimens (P<.05). They also displayed significantly higher 3-point flexural strength than the XY-oriented specimens (P<.05). The microstructural analysis showed that the texturing was heterogeneous and that the major axis of the large grains of alumina ran parallel to the orientation of the layers.Conclusions: The ZY orientation produced a reliable dental ceramic by SLA, with the shortest general manufacturing time and the highest mechanical strength when the layers were perpendicular to the test load surface