People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Borba, Márcia
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024A Comprehensive Review of the Multifaceted Characterisation Approaches of Dental Ceramics
- 2024Influence of Different Surface Finishing Protocols on the Wear Behavior of Lithium Disilicate Glass-Ceramics
- 2023Influence of piston material on the fatigue behavior of a glass-ceramiccitations
- 2023Fatigue resistance of polymeric restorative materials: effect of supporting substrate
- 2023Optimization of Lithium Disilicate Glass-Ceramic Crowns: Finish Line, Scanning, and Processing Methodscitations
- 2020Effect of a new irrigant solution containing glycolic acid on smear layer removal and chemical/mechanical properties of dentincitations
- 2019Effect of supporting substrate on the failure behavior of a polymer-infiltrated ceramic network materialcitations
- 2019Effect of supporting substrate on the failure behavior of a polymer-infiltrated ceramic network materialcitations
- 2019Fatigue Behavior of Crystalline-Reinforced Glass-Ceramicscitations
- 2018Effect of screw-access hole and mechanical cycling on fracture load of 3-unit implant-supported fixed dental prosthesescitations
- 2018Precision of different fatigue methods for predicting glass-ceramic failurecitations
- 2018Precision of different fatigue methods for predicting glass-ceramic failurecitations
- 2018How does the piston material affect the in vitro mechanical behavior of dental ceramics?citations
- 2018How does the piston material affect the in vitro mechanical behavior of dental ceramics?citations
- 2017Influence of surface finishing on fracture load and failure mode of glass ceramic crownscitations
- 2016Effect of different aging methods on the mechanical behavior of multi-layered ceramic structurescitations
- 2016Effect of different aging methods on the mechanical behavior of multi-layered ceramic structurescitations
- 2014Effect of the infrastructure material on the failure behavior of prosthetic crownscitations
- 2011Flexural strength and failure modes of layered ceramic structurescitations
- 2011Flexural strength and failure modes of layered ceramic structurescitations
Places of action
Organizations | Location | People |
---|
article
Influence of surface finishing on fracture load and failure mode of glass ceramic crowns
Abstract
<p>Statement of problem: Ceramic restorations often require adjustments using diamond rotary instruments, which damage the glazed surface. The effect of these adjustments on the fracture behavior of these restorations is unclear. </p><p>Purpose: The purpose of this in vitro study was to evaluate the influence of induced surface defects on the fracture load and mode of failure of lithium disilicate–based (LDS) glass ceramic restorations. </p><p>Material and methods: Premolar crowns were obtained from LDS computer-aided design and computer-aided manufacturing blocks (n=60) and glazed. The crowns were bonded to dentin analog dies and divided into 5 groups (n=12), as follows: glaze; abrasion (diamond rotary instrument 2135); abrasion and reglaze; abrasion and polishing (diamond rotary instrument 2135F, 2135 FF, and polishing devices); and polishing. The topography of the crowns was examined by scanning electron microscopy, and roughness was measured. A compressive load (0.5 mm/min) was applied by a piston to the center of the lingual cusp until fracture. The fracture load was recorded and data were statistically analyzed by ANOVA and the Tukey HSD test (α=.05). Fractured crowns were examined to determine the fracture origin. </p><p>Results: Polishing and/or reglazing resulted in lower roughness than for the abraded group (P<.05), which did not affect the fracture loads (P=.696). Catastrophic fracture with origin at the intaglio surface was the mode of failure for all the crowns. </p><p>Conclusions: The experiment design successfully submitted the crowns to a clinical stress state, resulting in a clinically relevant failure. Reglazing or polishing were effective in reducing surface defects. Surface treatments had no effect on the immediate catastrophic failure of LDS crowns.</p>