People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vanfleteren, Jan
IMEC
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2023Methods to improve accuracy of electronic component positioning in thermoformed electronicscitations
- 2022Innovative component positioning method for thermoformed electronicscitations
- 2022A study on over-molded copper-based flexible electronic circuitscitations
- 2021Fully integrated flexible dielectric monitoring sensor system for real-time in situ prediction of the degree of cure and glass transition temperature of an epoxy resincitations
- 2020Flexible microsystems using over-molding technologycitations
- 2020Solar cells integration in over-molded printed electronicscitations
- 2019Effect of overmolding process on the integrity of electronic circuitscitations
- 20183D multifunctional composites based on large-area stretchable circuit with thermoforming technologycitations
- 2017Stretchable electronic platform for soft and smart contact lens applicationscitations
- 2017Arbitrarily shaped 2.5D circuits using stretchable interconnects embedded in thermoplastic polymerscitations
- 2016One-time deformable thermoplastic devices based on flexible circuit board technologycitations
- 2016RTM Production Monitoring of the A380 Hinge Arm Droop Nose Mechanism: A Multi-Sensor Approachcitations
- 2016Stretchable electronic platform for soft and smart contact lens applications
- 2015Design, construction and testing of a COC 3D flow-over flow-through bioreactor for hepatic cell culture
- 2015Deformable microsystem for in situ cure degree monitoring of GFRP(Glass Fibre Reinforced Plastic)
- 20152.5D smart objects using thermoplastic stretchable interconnectscitations
- 2015Free-form 2.5D thermoplastic circuits using one-time stretchable interconnections
- 2013Stretchable electronics technology for large area applications: fabrication and mechanical characterizationcitations
- 2013Parylene C for hermetic and flexible encapsulation of interconnects and electronic components
- 2012Biocompatible packaging solutions for implantable electronic systems for medical applications
- 2011The effects of encapsulation on deformation behavior and failure mechanisms of stretchable interconnectscitations
- 20113D-stacking of UTCPs as a module miniaturization technology
- 2007Design of metal interconnects for stretchable electronic circuits using finite element analysiscitations
- 2002An O/E measurement probe based on an optics-extended MCM-D motherboard technology
Places of action
Organizations | Location | People |
---|
conferencepaper
Flexible microsystems using over-molding technology
Abstract
Today’s world is full of intelligent electronics and with the development of flexible printed electronics technologies, different integration approaches are of high demand. The combination of electronics with polymer is a new technology platform as it integrates multiple functionalities into plastic products. This work shows preliminary results in the integration of electronic components (e.g. NFC chips and LEDs) using over-molding technology. A significant degree of freedom in product design is obtained resulting in a low-cost fabrication of flexible smart objects. The integration is achieved by using adhesion between flexible circuits and injection molded plastics. In order to check the adhesion performance between the flexible circuit and polymer injected, the polyimide foils with patterned copper cladding were over-molded with different engineering plastics into the form of peel test specimens. The technology was shown by the realization of a demonstrator, in which LEDs are wirelessly powered using an NFC antenna and a chip. The NFC antenna is executed in the copper layer and the LEDs and NFC chip are soldered on the foil. The antenna and NFC chip can harvest the energy from (e.g. a smartphone) in order to power the LEDs. This is a simple example of wireless energy transfer that could be used to power circuits and readout sensor values using NFC without the need of having an integrated battery.