Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Poppe, Christian Timo

  • Google
  • 4
  • 13
  • 20

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2022Towards 3D Process Simulation for In Situ Hybridization of Fiber-Metal-Laminates (FML)4citations
  • 2021A Benchmark for Fluid-Structure Interaction in Hybrid Manufacturing: Coupled Eulerian-Lagrangian Simulationcitations
  • 2020Capabilities of macroscopic forming simulation for large-scale forming processes of dry and impregnated textiles9citations
  • 2020Material modeling in forming simulation of three-dimensional fiber-metal-laminates - A parametric study7citations

Places of action

Chart of shared publication
Werner, Henrik O.
2 / 9 shared
Henning, Frank
2 / 83 shared
Kruse, Moritz
1 / 10 shared
Khalifa, Noomane Ben
1 / 9 shared
Kärger, Luise
4 / 86 shared
Chen, Hui
1 / 22 shared
Meyer, Nils
1 / 24 shared
Krauß, Constantin
1 / 14 shared
Dietrich, Sarah
1 / 3 shared
Seuffert, Julian
1 / 12 shared
Dörr, D.
1 / 9 shared
Galkin, Siegfried
1 / 5 shared
Werner, Henrik
1 / 2 shared
Chart of publication period
2022
2021
2020

Co-Authors (by relevance)

  • Werner, Henrik O.
  • Henning, Frank
  • Kruse, Moritz
  • Khalifa, Noomane Ben
  • Kärger, Luise
  • Chen, Hui
  • Meyer, Nils
  • Krauß, Constantin
  • Dietrich, Sarah
  • Seuffert, Julian
  • Dörr, D.
  • Galkin, Siegfried
  • Werner, Henrik
OrganizationsLocationPeople

article

Material modeling in forming simulation of three-dimensional fiber-metal-laminates - A parametric study

  • Henning, Frank
  • Poppe, Christian Timo
  • Werner, Henrik
  • Kärger, Luise
Abstract

S.154-161 ; Forming of fiber-metal-laminates (FML) into complex geometries is challenging, due to the low fracture toughness of the fibers. Several researchers have addressed this topic in recent years. A new manufacturing process has been introduced in our previous work that successfully combines deep drawing with thermoplastic resin transfer molding (T-RTM) in a single process step. During molding, the fabric is infiltrated with a reactive monomeric matrix, which polymerizes to a thermoplastic after the forming process is completed. In our previous work, a numerical modeling approach was presented for this fully integrated process, investigating a hybrid laminate with 1 mm thick metal sheets of DC04 as top layers and three inner glass fiber layers. Although initial results were promising, there were still some pending issues regarding the modeling of material behavior. The current study aims to address several of these open issues and to provide a general modelling framework for future enhancements. For this purpose, the existing modelling approach is extended and used for parameter analysis. Regarding the influence of different material characteristics on the forming result, shear, bending and compression properties of the fabric are modified systematically. It is shown, that the compression behavior and particularly the tension-compression anisotropy of the fabric is of high importance for modelling the combined forming of fabric and metal. The bending and shear properties of the fabric are negligible small compared to the metal stiffness which dominates the draping process. Finally, it is demonstrated that modelling the fabric layers using continuum shells provides a promising approach for future research, as it enables a suitable way to account for transversal compaction during molding. ; 47

Topics
  • impedance spectroscopy
  • simulation
  • glass
  • reactive
  • glass
  • resin
  • thermoplastic
  • drawing
  • fracture toughness