People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Awais, Muhammad
Aalto University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Hydrogen Storage Capacity of Lead-Free Perovskite NaMTH3 (MT=Sc, Ti, V): A DFT Studycitations
- 2024Oxidized alginate-gelatin (ADA-GEL)/silk fibroin/Cu-Ag doped mesoporous bioactive glass nanoparticle-based hydrogels for potential wound care treatmentscitations
- 2023High‐Throughput Exploration of Triple‐Cation Perovskites via All‐in‐One Compositionally‐Graded Filmscitations
- 2023Mechanical Properties of Plastic Concrete Made Using Recycled Aggregates for Paving Blockscitations
- 2022Limitations in the grain boundary processing of the recycled HDDR Nd-Fe-B systemcitations
- 2021Visualizing Degradation of Cellulose Nanofibers by Acid Hydrolysiscitations
- 2021Visualizing Degradation of Cellulose Nanofibers by Acid Hydrolysiscitations
- 2020Observing microfibril bundles in wood by small-angle neutron scattering
- 2020Bundling of cellulose microfibrils in native and polyethylene glycol-containing wood cell walls revealed by small-angle neutron scatteringcitations
- 2018A computational and experimental analysis of crease behavior in press forming processcitations
- 2018Formalization of UML Composite Structure using Colored Petri Nets
- 2017Finite element analysis of the press forming processcitations
- 2013Electrochemical characterization of NiO electrodes deposited via a scalable powder microblasting techniquecitations
- 2013Dye sensitised solar cells with nickel oxide photocathodes prepared via scalable microwave sinteringcitations
- 2011Application of a novel microwave plasma treatment for the sintering of nickel oxide coatings for use in dye-sensitized solar cellscitations
- 2010Deposition and characterization of NiOx coatings by magnetron sputtering for application in dye-sensitized solar cellscitations
Places of action
Organizations | Location | People |
---|
article
A computational and experimental analysis of crease behavior in press forming process
Abstract
Press forming process is an important manufacturing process to produce paperboard tray packages. During the press forming, sever deformation occurs at the intricate shapes that can cause localized strains and the fracture. The formability can be improved by the crease lines and controlling parameters. Creases reduce the confine stiffness and assist the folding of the paperboard into the complex shapes. In this paper, the press forming process is modelled and simulated with the aid of finite element method. We focus especially on control parameters such as blank-holding force, friction and the behavior of creases at different forming levels. A stress-based failure criterion is also designed and modelled to analyze the rupture. The FE-model consisted of the male die, female die, blank holder and paperboard blank. A commercial material with the grammage of 290 g/m2 and thickness of 0.353mm is used in this study. The paperboard is modelled as an elastoplastic material and Hill’s yield criterion with isotropic hardening is used to interpret the hardening behavior. The creases are modelled as hinge connectors (one rotational degree of freedom). The failure criterion is implemented by the user-defined subroutine in Abaqus. In conclusion, the developed model can be used to analyze the crease behavior, strain mapping and the prediction of failure, which enables the better understanding of the paperboard converting in the press forming process.