People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Presz, Wojciech
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Ultrasonic Atomization as a Method for Testing Material Properties of Liquid Metals
- 2020Flexible system for micro-clinching processes design and analysiscitations
- 2020Vibration asisted progresive-die micro-blanking
- 2019Ultrasonic vibrations as an impulse for glass transition in microforming of bulk metallic glasscitations
- 2018Determination of material distribution in heading process of small bimetallic barcitations
- 2018THE METHOD OF MICRO-UPSETTING IN UNEVEN TEMPERATURE DISTRIBUTION
- 2018Dynamic effect in ultrasonic assisted micro-upsettingcitations
- 2017ULTRASONIC ASSISTED MICROFORMING
- 2017Application of Complex Micro-die for Extrusion of Micro-rivets for Micro-joining
- 2017Application of semi-physical modeling of interface surface roughness in design of pre-stressed microforming diescitations
- 2016New method for micro-clinching analysis
- 2012Mikrostructure transformations in austempered ductile iron during deformation by dynamic hardness test
- 2011Influence of Micro‐Rivet Manufacturing Process on Quality of Micro‐Jointcitations
- 2010Analysis of the influence of a rivet yield stress distribution on the micro-SPR joint - initial approachcitations
Places of action
Organizations | Location | People |
---|
article
Application of semi-physical modeling of interface surface roughness in design of pre-stressed microforming dies
Abstract
Permissible internal pressure in dies for cold extrusion may be increased by the use of one or two shrink rings. The design essentially boils down to defining the diametrical interference fit of the die/ring assembly. There are two methods of design: analytical one based on Lame’s solution and numerical one based on finite element modelling (FEM). None of these methods includes roughness of the interface surfaces of the die insert and the shrink ring. However, when designing the pre-stressed micro-dies, the interface roughness cannot be disregarded and the classical design of the diameter interference must be corrected. In this paper, a semi-physical modelling of interface roughness (SPMIR) is used as novel method which determines the interference correction value. A set of FEM models created on the base of Abbot-Firestone curves, determined from the roughness profile, enables determination of a contact surface stiffness curve and further the interference correction. Relative correction of the die diameter interference increases with the diameter decrease, which might be recognized as a pre-stressed micro-die assembling scale effect. In the experimental part, three miniature dies, with interface diameter 2.8 mm and different levels of interface surface roughness, Ra=0.16, Ra=0.43, Ra=0.60, have been manufactured by WEDM. Relative interference corrections calculated by the SPMIR method reached respectively 17.6, 27.9 and 43.3 %. A practical design advice has been formulated as follows: interference correction based on the interface surface topology is recommended for micro-dies with the interface diameter less than 10, 15 and 25 mm, for the three levels of the surface roughness investigated.