People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Huang, Jianglin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2020Microstructure evolution during hot deformation of REX734 austenitic stainless steelcitations
- 2017A dynamic model for simulation of hot radial forging processcitations
- 2017Effects of forming route and heat treatment on the distortion behaviour of case-hardened martensitic steel type S156
- 2013The effect of hydrogen on porosity formation during electron beam welding of titanium alloys
- 2012The effect of hydrogen on porosity formation during electron beam welding of titanium alloys
- 2012On the mechanism of porosity formation during welding of titanium alloyscitations
- 2012Hydrogen Transport and Rationalization of Porosity Formation during Welding of Titanium Alloyscitations
- 2012Coupled thermodynamic/kinetic model for hydrogen transport during electron beam welding of titanium alloycitations
Places of action
Organizations | Location | People |
---|
article
A dynamic model for simulation of hot radial forging process
Abstract
<p>A comprehensive dynamic process model has been developed to investigate features of the inherently transient hot radial forging process, taking account of complex process kinematics, thermo-elastoplastic material behaviour and microstructural evolution. As an input to this model, a fully systematic thermomechanical testing matrix was carried out on a Gleeble 3800 including temperature (20-1100°C), strain (up to a true strain of 1) and strain rates (from 0.1 to >50 s<sup>-1</sup>). The proposed model can accurately capture vibration characteristics due to the high frequency short strokes during radial forging, which have been found to have a strong effect on material flow, forging load. Numerical analyses were performed to investigate the effect of different axial spring stiffnesses on forging load, strain distribution in the workpiece, and maximum axial feeding rate. It has been found that forging load increases significantly with increasing stiffness of the axial spring. The axial spring stiffness was also found to have a strong effect on determination of axial feeding rate and reduction ratio of workpiece by limiting the axial vibration amplitude of workpiece under the maximum compression of spring coil to avoid hard stop of workpiece in the axial direction during forging. It has been found that the spring stiffness does not have a strong effect on the strain distribution in the work piece. For practical application, the proposed model is applied to simulate the manufacturing process of a hollow transmission shaft using a GFM SKK10/R machine. Simulation results based on a 3 dimensional framework provide a detailed insight of material flow, residual stress and grain size evolution during the multiple pass radial forging process and the results are compared with available experimental measurements. The results provide valuable insights for process design.</p>