People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ladani, Raj B.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2023Bioinspired design optimization for pseudo-ductility in platelet fibre laminatescitations
- 2019Liquid metal synthesis of two-dimensional aluminium oxide platelets to reinforce epoxy compositescitations
- 2018Fracture and fatigue behaviour of epoxy nanocomposites containing 1-D and 2-D nanoscale carbon fillerscitations
- 2018Increasing the fatigue resistance of epoxy nanocomposites by aligning graphene nanoplateletscitations
- 2017Aligning carbon nanofibres in glass-fibre/epoxy composites to improve interlaminar toughness and crack-detection capabilitycitations
- 2017Porous PDMS/CNFS composites for stretchable strain sensors
- 2017Alignment of nano and micron diameter carbon fillers in epoxy via electric field
- 2017Enhancing fatigue resistance and damage characterisation in adhesively-bonded composite joints by carbon nanofibrescitations
- 2017Ductility of platelet composites inspired by nacre design
- 2017Using carbon nanofibre Sensors for in-situ detection and monitoring of disbonds in bonded composite jointscitations
- 2017Novel electrically conductive porous PDMS/carbon nanofiber composites for deformable strain sensors and conductorscitations
- 2016A novel route for tethering graphene with iron oxide and its magnetic field alignment in polymer nanocompositescitations
- 2016Multifunctional properties of epoxy nanocomposites reinforced by aligned nanoscale carboncitations
- 2015Disbond monitoring of adhesive joints reinforced with carbon nanofibres
- 2015Aligning multilayer graphene flakes with an external electric field to improve multifunctional properties of epoxy nanocompositescitations
- 2015Epoxy nanocomposites with aligned carbon nanofillers by external electric fields
- 2015Improving the toughness and electrical conductivity of epoxy nanocomposites by using aligned carbon nanofibrescitations
Places of action
Organizations | Location | People |
---|
document
Using carbon nanofibre Sensors for in-situ detection and monitoring of disbonds in bonded composite joints
Abstract
<p>This paper focuses on the ability of carbon nanofibre (CNF) networks to in situ monitor fatigue induced disbond damage in adhesive bonded composite joints. The inclusion of CNFs in the epoxy adhesive increases its conductivity by five orders of magnitude. The improved electrical conductivity is utilized to evaluate the ability of the CNF network to monitor and detect the fatigue induced disbond damage by measuring the in-situ resistance changes using a four probe setup. The changes in total resistance was a function of the bulk electrical resistivity of the adhesive and the bond dimensions, which were related to the disbond length to model and determine the size of the disbond. The simple resistivity model was in good agreement with the resistance measured during fatigue testing. Good agreement was found between the optical disbond observations and the disbond length calculated using the proposed model. Finite element simulations were performed to ascertain the range of applicability of the proposed model. The simplicity of the disbond detection technique via direct current potential drop technique enables real time monitoring of crack growth in the composite structure.</p>