People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zhang, Jin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2024Probing quantum floating phases in Rydberg atom arrayscitations
- 2024Design and 3D Printing of Polyacrylonitrile‐Derived Nanostructured Carbon Architecturescitations
- 2022Soft Liquid Metal Infused Conductive Spongescitations
- 2022Induction heating for the removal of liquid metal-based implant mimics: a proof-of-conceptcitations
- 2020Carbonization of low thermal stability polymers at the interface of liquid metalscitations
- 2020Grain boundary mobilities in polycrystalscitations
- 2018Electrodeposited Ni-Based Magnetic Mesoporous Films as Smart Surfaces for Atomic Layer Deposition: An “All-Chemical” Deposition Approach toward 3D Nanoengineered Composite Layers
- 2018Three-dimensional grain growth in pure iron. Part I. statistics on the grain levelcitations
- 2018Fracture and fatigue behaviour of epoxy nanocomposites containing 1-D and 2-D nanoscale carbon fillerscitations
- 2018Electrodeposited Ni-based magnetic mesoporous films as smart surfaces for atomic layer deposition: an 'all-chemical' deposition approach toward 3D nanoengineered composite layerscitations
- 2017Aligning carbon nanofibres in glass-fibre/epoxy composites to improve interlaminar toughness and crack-detection capabilitycitations
- 2017Using carbon nanofibre Sensors for in-situ detection and monitoring of disbonds in bonded composite jointscitations
- 2017Novel electrically conductive porous PDMS/carbon nanofiber composites for deformable strain sensors and conductorscitations
- 2017Determining material parameters using phase-field simulations and experimentscitations
- 2017Voltage-induced coercivity reduction in nanoporous alloy films : a boost towards energy-efficient magnetic actuationcitations
- 2016A novel route for tethering graphene with iron oxide and its magnetic field alignment in polymer nanocompositescitations
- 2016Multifunctional properties of epoxy nanocomposites reinforced by aligned nanoscale carboncitations
- 2016Efficient perovskite solar cells by metal ion dopingcitations
- 2016Room-temperature synthesis of three-dimensional porous ZnO@CuNi hybrid magnetic layers with photoluminescent and photocatalytic propertiescitations
- 2016Nanocasting synthesis of mesoporous SnO₂ with a tunable ferromagnetic response through Ni loadingcitations
- 2016Nanomechanical behaviour of open-cell nanoporous metals: homogeneous versus thickness-dependent porositycitations
- 2015Aligning multilayer graphene flakes with an external electric field to improve multifunctional properties of epoxy nanocompositescitations
- 2015Epoxy nanocomposites with aligned carbon nanofillers by external electric fields
- 2015Improving the toughness and electrical conductivity of epoxy nanocomposites by using aligned carbon nanofibrescitations
Places of action
Organizations | Location | People |
---|
document
Using carbon nanofibre Sensors for in-situ detection and monitoring of disbonds in bonded composite joints
Abstract
<p>This paper focuses on the ability of carbon nanofibre (CNF) networks to in situ monitor fatigue induced disbond damage in adhesive bonded composite joints. The inclusion of CNFs in the epoxy adhesive increases its conductivity by five orders of magnitude. The improved electrical conductivity is utilized to evaluate the ability of the CNF network to monitor and detect the fatigue induced disbond damage by measuring the in-situ resistance changes using a four probe setup. The changes in total resistance was a function of the bulk electrical resistivity of the adhesive and the bond dimensions, which were related to the disbond length to model and determine the size of the disbond. The simple resistivity model was in good agreement with the resistance measured during fatigue testing. Good agreement was found between the optical disbond observations and the disbond length calculated using the proposed model. Finite element simulations were performed to ascertain the range of applicability of the proposed model. The simplicity of the disbond detection technique via direct current potential drop technique enables real time monitoring of crack growth in the composite structure.</p>