People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Palmroth, Aleksi
Tampere University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2021Bioresorbable Wireless Resonance Sensors
- 2020Evaluation of scaffold microstructure and comparison of cell seeding methods using micro-computed tomography-based toolscitations
- 2020Materials and Orthopedic Applications for Bioresorbable Inductively Coupled Resonance Sensorscitations
- 2018Bioresorbable Conductive Wire with Minimal Metal Contentcitations
- 2016Piezoelectric sensitivity of a layered film of chitosan and cellulose nanocrystalscitations
- 2016Inductively coupled passive resonance sensor for monitoring biodegradable polymers in vitrocitations
Places of action
Organizations | Location | People |
---|
document
Inductively coupled passive resonance sensor for monitoring biodegradable polymers in vitro
Abstract
Capacitive sensors can be used to monitor changes in materials by monitoring complex permittivity. Inductively coupled passive resonance sensors provide means to make short range wireless permittivity measurements if the sensors are embedded in the tested material. In this study, inductively coupled sensors were embedded in biodegradable polymers, which are important materials in regenerative medicine. However, it is challenging to observe their decay especially in vivo. After preparing the samples by compression moulding, the encapsulated sensors and a reference series were immersed in buffer solution. The signals from the passive resonance sensors were measured for eight weeks. In addition, mechanical and chemical testing was periodically carried out to monitor the state of the reference series. The wirelessly measured signals are compared with water absorption, flexural modulus, glass transition temperature and viscosity.