Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Simoes Da Silva, Ls

  • Google
  • 2
  • 6
  • 72

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2017Mixed mode (I plus II) fatigue crack growth in puddle iron54citations
  • 2016Mixed mode (I plus II) fatigue crack growth of long term operating bridge steel18citations

Places of action

Chart of shared publication
Correia, Jafo
2 / 56 shared
Rebelo, C.
2 / 10 shared
Lesiuk, G.
2 / 44 shared
Kucharski, P.
2 / 3 shared
De Jesus, Amp
1 / 92 shared
De Jesus, Mp
1 / 1 shared
Chart of publication period
2017
2016

Co-Authors (by relevance)

  • Correia, Jafo
  • Rebelo, C.
  • Lesiuk, G.
  • Kucharski, P.
  • De Jesus, Amp
  • De Jesus, Mp
OrganizationsLocationPeople

document

Mixed mode (I plus II) fatigue crack growth of long term operating bridge steel

  • Correia, Jafo
  • Rebelo, C.
  • Lesiuk, G.
  • Kucharski, P.
  • Simoes Da Silva, Ls
  • De Jesus, Mp
Abstract

The structural components from structures such as bridge members are subjected to a long operating period of time. The problem of fatigue cracks is more interesting in existing bridge structures with existing cracks. In case of the structures erected at the turn of the 19th and 20th centuries, the cracks are natural elements of the old steel metallic structures. The uniaxial fatigue crack growth description lead us often to significant errors in predicting of a residual lifetime. As a good example, it can be a residual lifetime of the riveted joints in such a type of structures. On the other hand, the 19th century structures were erected with puddled iron or low carbon mild rimmed steel. The experimental results [1,2] obtained by authors, have shown that the fatigue cracks grow much faster than its modern equivalent. This phenomenon is supported by microstructural degradation processes [2]. In this paper some examples of degenerated microstructures have been presented. In order to fill a lack in experimental data in the literature, the results of a mixed mode (I+II) fatigue crack growth have been presented and discussed within the background of Fracture Mechanics models. All the results have been implemented into the Abaqus environment. (C) 2016 The Authors. Published by Elsevier Ltd.

Topics
  • impedance spectroscopy
  • microstructure
  • Carbon
  • crack
  • steel
  • fatigue
  • iron