Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Maierhofer, Jürgen

  • Google
  • 2
  • 4
  • 34

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2019Analytical and Numerical Crack Growth Analysis of 1:3 Scaled Railway Axle Specimens14citations
  • 2015Fatigue crack growth under constant and variable amplitude loading at semi-elliptical and V-notched steel specimens20citations

Places of action

Chart of shared publication
Pippan, Reinhard
1 / 48 shared
Simunek, David
2 / 5 shared
Leitner, Martin
2 / 66 shared
Gänser, Hans-Peter
2 / 5 shared
Chart of publication period
2019
2015

Co-Authors (by relevance)

  • Pippan, Reinhard
  • Simunek, David
  • Leitner, Martin
  • Gänser, Hans-Peter
OrganizationsLocationPeople

article

Fatigue crack growth under constant and variable amplitude loading at semi-elliptical and V-notched steel specimens

  • Simunek, David
  • Leitner, Martin
  • Maierhofer, Jürgen
  • Gänser, Hans-Peter
Abstract

An assessment of fatigue crack propagation in components and structures based on fracture mechanical approaches is fundamental to define periodic intervals for service inspections. This paper focuses on the investigation of flat specimens made of mild steel S355 with V-shaped and semi-elliptical notches under constant and variable amplitude fatigue loading to analyze the influence of load sequence effects on crack propagation in order to obtain information about the remaining service life of components. Depending on the load sequence, crack propagation may be accelerated, delayed or in some cases even stopped, which leads to beach marks within the area of fracture. Fractographic analyses of the tested specimens are carried out by light-optical microscopy to determine different crack propagation stages. Numerical and analytical linear-elastic fracture mechanics (LEFM) calculations based on two- and three-dimensional models are performed for constant and variable amplitude loads. All analytical assessments of the V-notched specimen illustrate conservative results compared to testing, and the numerical results match the experimental investigations well. The maximum deviation of results is observed at variable amplitude loading due to missing retardation effects for the LEFM calculations. Preliminary distortion measurements and application of strain gauges on semi-elliptical notched specimens are performed to investigate the influence of angular deformation due to clamping on the local stress distribution. A simple model accounting for superimposed static bending stresses due to clamping is able to improve the crack growth predictions for semi-elliptical surface cracks significantly. A final comparison of the fractographic analyses and the numerical crack propagation calculations illustrates differences in the results and provides information to assess the fatigue crack growth and service inspection intervals of components under variable amplitude loading more precisely.

Topics
  • impedance spectroscopy
  • surface
  • crack
  • steel
  • fatigue
  • optical microscopy