People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bhattacharya, Rahul
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2018Design and validation of a fixture for positive incremental sheet formingcitations
- 2014Complex Incremental Sheet Forming Using Back Die Support on Aluminium 2024, 5083 and 7075 alloyscitations
- 2014Improvement in ductility in commercially pure titanium alloys by stress relaxation at room temperaturecitations
Places of action
Organizations | Location | People |
---|
article
Complex Incremental Sheet Forming Using Back Die Support on Aluminium 2024, 5083 and 7075 alloys
Abstract
The complex prototype forming of an industrial component was investigated on AA2024, 5083 and 7075 sheets using the incremental sheet forming approach. Fracture occurred at the top of crevice and steeper wall angle region for AA2024 and 7075, respectively, whereas no fracture in the AA5083 alloy. Thinning was higher at the steeper wall angle for all the alloys, from both the experimental and finite element analysis. It is speculated that the typical tensile nature of loading and the associated thinning of the material at these regions caused plastic instability in the material thereby creating micro-cracks that resulted in the failure of the component.