People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nascimento, L.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2012The Effect of Reversed Loading Conditions on the Mechanical Behaviour of Extruded Magnesium Alloy AZ31
- 2011Influence of Crystallographic Texture on the High Cycle Fatigue of Extruded AZ31 Magnesium Alloycitations
- 2010High Cycle Fatigue Behaviour of Magnesium Alloyscitations
- 2009Corrosion of Friction Stir Welded Magnesium Alloy AM50citations
- 2009Comparison of quasi-static and cyclic plastic behaviour of a wrought magnesium alloy
Places of action
Organizations | Location | People |
---|
booksection
High Cycle Fatigue Behaviour of Magnesium Alloys
Abstract
The influence of crystallographic texture on fatigue failure mechanisms was studied by comparing the fatigue behaviour of two extruded magnesium alloys, AZ31 and ZN11. The microstructures and fracture surfaces of specimens were examined using scanning electron microscopy (SEM) to reveal the micromechanisms of fatigue crack initiation. The AZ31 alloy has an inhomogeneous grain structure and strong fibre texture, which cause strong asymmetry in the tensile and compressive yield strengths. This yield stress asymmetry is related to the high twinning activity under compressive loading. The metallographic investigation reveals that the cracks are mainly initiated at twin boundaries. On the other hand, a weak texture and fully recrystallised, homogeneous grain structure are found in the experimental alloy ZN11 after extrusion. As a consequence, twinning is suppressed and no yield stress asymmetry is observed. The fatigue failure of ZN11 is initiated by cyclic slip deformation.