People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Möller, Mauritz
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2022Spatially tailored laser energy distribution using innovative optics for gas-tight welding of casted and wrought aluminum alloys in e-mobilitycitations
- 2022Laser Metal Deposition of AlSi10Mg with high build ratescitations
- 2018Quality target-based control of geometrical accuracy and residual stresses in laser metal depositioncitations
- 2018From powder to solid: The material evolution of Ti-6Al-4V during laser metal depositioncitations
- 2018Laser metal deposition of titanium parts with increased productivity
- 2017Characterization of the anisotropic properties for laser metal deposited Ti-6Al-4 V
- 2017Laser metal deposition of Ti-6Al-4V structures: Analysis of the build height dependent microstructure and mechanical propertiescitations
- 2016Analysis of residual stress formation in additive manufacturing of Ti-6Al-4V
- 2016Evolutionary-based design and control of geometry aims for AMD-manufacturing of Ti-6Al-4V parts
- 2016Evolutionary-based design and control of geometry aims for AMD-manufacturing of Ti-6Al-4V parts ...
Places of action
Organizations | Location | People |
---|
document
Laser Metal Deposition of AlSi10Mg with high build rates
Abstract
Additive manufacturing with aluminum alloys is becoming increasingly important in the automotive industry to meet the growing demand for lightweight construction and flexibility. However, higher build rates and higher process efficiency are necessary for laser metal deposition (LMD) to be more economically competitive. The so called high-speed LMD allows high build rates by partial melting of the powder before it hits the melt pool but is currently limited to coatings of rotationally symmetrical parts. Our goal is to apply this process technology to the additive manufacturing of AlSi10Mg and thereby increase the build rate. In this work we demonstrate a successful build-up of cuboids manufactured with the alloy AlSi10Mg using feed rates ten times higher compared to state of the art. The tensile strength of these cuboids is in the range of 180 to 220 MPa.