People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Biondani, Francesco Giuseppe
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2021On the role of the powder stream on the heat and fluid flow conditions during Directed Energy Deposition of maraging steel - Multiphysics modelling and experimental validationcitations
- 2020Multi-metal additive manufacturing process chain for optical quality mold generationcitations
- 2020Surface topography analysis of ball end milled tool steel surfacescitations
- 2018Additive Manufacturing of Mould Inserts with Mirror-like Surfacescitations
- 2018Comparison of selected processes for surface microstructuring of complex mould for an implanted devicecitations
- 2018Methodologies for characterization of smearing micro geometry on ball end milled tool steel surfaces
- 2015Application of Functional Nano-Patterning to Polymer Medical Micro Implantscitations
- 2015Application of Functional Nano-Patterning to Polymer Medical Micro Implantscitations
Places of action
Organizations | Location | People |
---|
article
Surface topography analysis of ball end milled tool steel surfaces
Abstract
Many mechanical components require mirror-like surface appearance. When the application concerns the manufacturing of steel dies and moulds, material removal processes are the preferential choice in order to achieve the wanted dimensions and surface topography. In particular, ball milling is used in all those cases that require the machining of free form surfaces. When mirror-like surface appearance is in focus in such components, the final machining operations consists in a very shallow cut. The theoretical surface roughness (kinematic surface topography) that can be achieved in a finishing operation by ball end milling is orders of magnitude below the actual surface roughness. Beside runout and machine tool positioning errors, the quality of the cutting tools is a key factor in determining the surface topography. The combination of shallow depth of cut together with the finite size of the cutting edge radius of the tool are responsible for the occurrence of material smearing phenomena. Smearing, consisting in the accumulation of plastically deformed material over the surface, is particularly detrimental for the aesthetic functionality of machined components because it is responsible of the "foggy" appearance. In order to minimize the occurrence of the smeared material it is necessary to have a good understanding of the causes of the smearing formation process. The aim of this paper is the description and quantification of the smearing phenomena for ball end milling operations. The location of the smeared material is determined through SEM image analysis and related with the direction of the cutting speed and milling strategy. Subsequently the volume of the smeared material is quantified through a combination of confocal microscopy and SEM image analysis. Based on the volumetric analysis of the smeared material a new method for determining the Minimum Uncut Chip Thickness for the material is proposed.