People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Dhokia, Vimal
University of Bath
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (29/29 displayed)
- 2023A Feasibility Study for Additively Manufactured Composite Tooling
- 2023The state-of-the-art of wire arc directed energy deposition (WA-DED) as an additive manufacturing process for large metallic component manufacturecitations
- 2023Additively manufactured cure tools for composites manufacturecitations
- 2023Characterisation of residual stresses and oxides in titanium, nickel, and aluminium alloy additive manufacturing powders via synchrotron X-ray diffractioncitations
- 2022A FEASIBILITY STUDY OF ADDITIVELY MANUFACTURED COMPOSITE TOOLING
- 2021Effects of in-process LN2 cooling on the microstructure and mechanical properties of Type 316L stainless steel produced by wire arc directed energy depositioncitations
- 2019Characterisation of austenitic 316LSi stainless steel produced by wire arc additive manufacturing with interlayer cooling
- 2018Invited Review Article: Strategies and Processes for High Quality Wire Arc Additive Manufacturingcitations
- 2018Edge trimming of carbon fibre reinforced plasticcitations
- 2016Comparative investigation on using cryogenic machining in CNC milling of Ti-6Al-4V titanium alloycitations
- 2016Cryogenic High Speed Machining of Cobalt Chromium Alloycitations
- 2016Hybrid additive and subtractive machine tools - research and industrial developmentscitations
- 2016Investigation of the effects of cryogenic machining on surface integrity in CNC end milling of Ti-6Al-4V titanium alloycitations
- 2015Experimental Framework for Testing the Finishing of Additive Parts
- 2015Image Processing for Quantification of Machining Induced Changes in Subsurface Microstructure
- 2015Investigation of Cutting Parameters in Sustainable Cryogenic End Milling
- 2014Effect of machining environment on surface topography of 6082 T6 aluminium
- 2013A surface roughness and power consumption analysis when slot milling austenitic stainless steel in a dry cutting environmentcitations
- 2013A Surface Roughness and Power Consumption Analysis When Slot Milling Austenitic Stainless Steel in a Dry Cutting Environmentcitations
- 2013State-of-the-art cryogenic machining and processingcitations
- 2012Evaluation of Cryogenic CNC Milling of Ti-6Al-4V Titanium Alloy
- 2012Cryogenic Machining of Carbon Fibre
- 2012An initial study of the effect of using liquid nitrogen coolant on the surface roughness of inconel 718 nickel-based alloy in CNC millingcitations
- 2012An initial study of the effect of using liquid nitrogen coolant on the surface roughness of inconel 718 nickel-based alloy in CNC millingcitations
- 2012Study of Cryogenics in CNC Milling of Metal Alloys
- 2012Study of the effects of cryogenic machining on the machinability of Ti-6Al-4V titanium alloy
- 2012Environmentally conscious machining of difficult-to-machine materials with regard to cutting fluidscitations
- 2011Adiabatic shear band formation as a result of cryogenic CNC machining of elastomerscitations
- 2010The formation of adiabatic shear bands as a result of cryogenic CNC machining of elastomerscitations
Places of action
Organizations | Location | People |
---|
document
Edge trimming of carbon fibre reinforced plastic
Abstract
In recent years the use of Carbon Fibre Reinforced Plastic (CFRP) has transitioned towards mass manufacture applications, heightening the requirement to improve both the processing capability and production cost. Machining is a key process which CFRP components often undergo, in order to achieve final assembly requirements, however, it can introduce delamination, poor surface roughness and even result in component scrap. Furthermore, the rate of tool wear and subsequently cost of tooling can be high. This paper investigates the effect of cryogenic CNC machining using liquid nitrogen on tool wear and machined surface quality for edge trimming of CFRP using different cutting tool geometries. The results show that the cutting environment has a significant effect on CFRP surface roughness and delamination for both cutting tools beyond a short period of accelerated tool wear. The cryogenic environment improved the average surface roughness of samples by 28.1% independent of cutting tool geometry compared to dry machining. Improvement to delamination was only found in samples machined with the up-down compression cutting tool, which resulted in 49.9% reduction in delamination. The lack of improvement to delamination found with the multi-tooth cutting tool is likely due to increased prevalence of the chipping mode of tool wear in cryogenic cutting environment. In contrast, the abrasive wear zone of the up-down compression cutting tool exhibited higher sharpness than in dry machining and the geometry appears to be well suited for achieving improvements in surface quality and tool wear under cryogenic machining. This research indicated the high interaction between cutting tool geometry and machining environment.