People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hofstätter, Thomas
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2018Thermal behaviour of additively manufactured injection moulding inserts
- 2018Flow Characteristics of a Thermoset Fiber Composite Photopolymer Resin in a Vat Polymerization Additive Manufacturing Processcitations
- 2018Evolution of Additively Manufactured Injection Molding Inserts Investigated by Thermal Simulationscitations
- 2018Internal Fiber Structure of a High-Performing, Additively Manufactured Injection Molding Insertcitations
- 2017Rheology of high melt strength polypropylene for additive manufacturingcitations
- 2017Performance Simulation and Verification of Vat Photopolymerization Based, Additively Manufactured Injection Molding Inserts with Micro-Featurescitations
- 2017Performance Simulation and Verification of Vat Photopolymerization Based, Additively Manufactured Injection Molding Inserts with Micro-Featurescitations
- 2017Integration of Fiber-Reinforced Polymers in a Life Cycle Assessment of Injection Molding Process Chains with Additive Manufacturingcitations
- 2017Life Cycle Assessment of Fiber-Reinforced Additive Manufacturing for Injection Molding Insert Production
- 2017Dimensional accuracy of Acrylonitrile Butadiene Styrene injection molded parts produced in a pilot produc
- 2017Applications of Fiber-Reinforced Polymers in Additive Manufacturingcitations
- 2016Rheology of High-Melt-Strength Polypropylene for Additive Manufacturing
- 2016Distribution and Orientation of Carbon Fibers in Polylactic Acid Parts Produced by Fused Deposition Modeling
- 2016Distribution and Orientation of Carbon Fibers in Polylactic Acid Parts Produced by Fused Deposition Modeling
- 2016Comparison of conventional Injection Mould Inserts to Additively Manufactured Inserts using Life Cycle Assessment
Places of action
Organizations | Location | People |
---|
article
Applications of Fiber-Reinforced Polymers in Additive Manufacturing
Abstract
Additive manufacturing technologies are these years entering the market of functional final parts. Initial research has been performed targeting the integration of fibers into additive manufactured plastic composites. Major advantages, among others, are for example increased tensile strength and Young's modulus. Key challenges in the field, as of now, are proper fiber placement, fiber seizing, an increased knowledge in the used materials and how they are applied into engineering solutions through proper control of the additive manufacturing process. The aim of this research is the improved understanding of fiber-reinforcement in additive manufacturing in terms of production and application. Vat polymerization and material extrusion techniques for composite additive manufacturing were investigated with respect of increasing adhesion between the matrix material and the fibers. Process optimization was performed in order to avoid matrix cracks and delamination.