People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Boxall, Colin
Lancaster University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2022Corrosion Behaviour of AGR Simulated Fuels (SIMFUELs)
- 2019The behaviour of spent nuclear fuel in wet interim storage
- 2019Towards the decontamination of plutonium contaminated bricks
- 2018Mechanisms of fixed contamination of commonly engineered surfaces
- 2017Real time nanogravimetric monitoring of corrosion in radioactive environments
- 2017AGR Cladding Corrosioncitations
- 2016The effect of acetohydroxamic acid on stainless steel corrosion in nitric acidcitations
- 2016Real-Time Nanogravimetric Monitoring of Corrosion in Radioactive Decontamination Systemscitations
- 2016Corrosion of AGR Fuel Pin Steel Under Conditions Relevant to Permanent Disposalcitations
- 2015Corrosion behaviour of AGR SIMFUELScitations
- 2015The effect of SO3-Ph-BTBP on stainless steel corrosion in nitric acidcitations
- 2015Real time nanogravimetric monitoring of corrosion for nuclear decommissioningcitations
- 2013The metallisation of insulating substrates with nano-structured metal films of controllable pore dimensioncitations
- 2013The development of nanoporous metal membranes for analytical separartions
- 2013Nitric acid reduction on 316L stainless steel under conditions representative of reprocessingcitations
- 2013Corrosion behaviour of AGR simulated fuelscitations
- 2013The nanoporous metallisation of polymer membranes through photocatalytically initiated electroless depositioncitations
- 2012Method for formation of porous metal coatings
- 2012Surface Decontamination by Photocatalysis
- 2012The nanoporous metallisation of insulating substrates through Photocatalytically Initiated Electroless Deposition (PIED)
- 2012Semiconductor photocatalysis and metal deposition
- 2012Fixed Contamination on Steel Surfaces: First Use of Quartz Crystal Microgravimetry to Measure Oxide Growth on Process Steels Under Conditions Typical of Nuclear Reprocessingcitations
- 2010Surface decontamination by photocatalysis
- 2009Synthesis of alpha- and beta-FeOOH iron oxide nanoparticles in non-ionic surfactant mediumcitations
- 2006Mesoporous and Nanoparticulate Metal Oxides: Applications in New Photocatalysis
- 2005The applications of photocatalytic waste minimisation in nuclear fuel processingcitations
Places of action
Organizations | Location | People |
---|
article
Corrosion of AGR Fuel Pin Steel Under Conditions Relevant to Permanent Disposal
Abstract
Fuel pins from the UK's Advanced Gas-cooled Reactors (AGR) consist of ceramic UO2 fuel encased in a 20/25/Nb stainless steel cladding. Spent AGR fuel is currently reprocessed, but the option of direct disposal of spent fuel in a sealed, underground Geological Disposal Facility (GDF) is now under examination. It is assumed that over several thousand years groundwater from the environment will penetrate these barriers and come into contact with the fuel surface and steel cladding. Electrochemical studies on unsensitised samples of 20/25/Nb steel in simulant groundwater electrolytes have been performed, and show low corrosion currents, typically of the order μA/cm2, at the oxidative potential stresses found in such repositories. Whilst the cladding may therefore be considered to be passive short time periods, the very long timescales involved in a GDF project mean that these currents are sufficient to cause corrosion of the full thickness of the clad in a matter of decades. Furthermore, an increase in electrochemical potential from that expected of less than 50 mV is sufficient to initiate severe pitting corrosion in a matter of hours. It can therefore be assumed that there is a risk of cladding corrosion in a repository environment, and the corrosion products created may have implications for the chemistry of the spent fuel ceramic.