Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Moniz, Patrícia

  • Google
  • 1
  • 8
  • 34

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Membrane separation and characterisation of lignin and its derived products obtained by a mild ethanol organosolv treatment of rice straw34citations

Places of action

Chart of shared publication
Serralheiro, Cláudia
1 / 1 shared
Matos, Cristina T.
1 / 1 shared
Duarte, Luís C.
1 / 1 shared
Frissen, Augustinus E.
1 / 1 shared
Pereira, Helena
1 / 1 shared
Roseiro, Luísa B.
1 / 1 shared
Carvalheiro, Florbela
1 / 1 shared
Boeriu, Carmen
1 / 4 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Serralheiro, Cláudia
  • Matos, Cristina T.
  • Duarte, Luís C.
  • Frissen, Augustinus E.
  • Pereira, Helena
  • Roseiro, Luísa B.
  • Carvalheiro, Florbela
  • Boeriu, Carmen
OrganizationsLocationPeople

article

Membrane separation and characterisation of lignin and its derived products obtained by a mild ethanol organosolv treatment of rice straw

  • Serralheiro, Cláudia
  • Moniz, Patrícia
  • Matos, Cristina T.
  • Duarte, Luís C.
  • Frissen, Augustinus E.
  • Pereira, Helena
  • Roseiro, Luísa B.
  • Carvalheiro, Florbela
  • Boeriu, Carmen
Abstract

An organosolv process using ethanol-water was optimized in order to recover high quality lignin from rice-straw previously pre-treated by autohydrolysis at 210 °C. The results showed a selective and appreciable removal of lignin under very mild conditions and the highest delignification yield occurred at 30 °C. The lignin extracts were characterised using capillary zone electrophoresis (CZE), size exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FT-IR) and 31P-NMR, and two-dimensional heteronuclear single quantum correlation NMR spectroscopy (2D-HSQC NMR), which enabled the identification of low molecular weight lignins with a syringyl/guaiacyl ratio of about 0.74 containing phenolic compounds with potential bioactive properties. In order to separate the target compounds, membrane technology has been used and an enriched extract containing value-added phenolic compounds such as tricin, vanillin, ferulic acid and p-coumaric acid was obtained. High membrane efficiency (around 80%) was obtained for target compounds.

Topics
  • compound
  • lignin
  • two-dimensional
  • molecular weight
  • size-exclusion chromatography
  • Nuclear Magnetic Resonance spectroscopy
  • Fourier transform infrared spectroscopy