Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Delaney, Gary

  • Google
  • 7
  • 12
  • 86

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2023Modelling the influences of powder layer depth and particle morphology on powder bed fusion using a coupled DEM-CFD approach5citations
  • 2023Advances in Multiscale Modelling of Metal Additive Manufacturingcitations
  • 2023Smart recoating: A digital twin framework for optimisation and control of powder spreading in metal additive manufacturing14citations
  • 2021The Effect of Recoater Geometry and Speed on Granular Convection and Size Segregation in Powder Bed Fusion51citations
  • 2021Progress Towards a Complete Model of Metal Additive Manufacturing5citations
  • 2017Modelling Powder Flow in Metal Additive Manufacturing Systemscitations
  • 2017Aiming for modeling-assisted tailored designs for additive manufacturing11citations

Places of action

Chart of shared publication
Phua, Arden
4 / 4 shared
Davies, Chris
3 / 3 shared
Cummins, Sharen
4 / 4 shared
Ritchie, David
1 / 12 shared
Cleary, Paul
3 / 9 shared
Gunasegaram, Dayalan
4 / 8 shared
Sinnott, Matt
3 / 4 shared
Nguyen, Vu
4 / 16 shared
Owen, Phil
1 / 1 shared
Styles, Mark
1 / 6 shared
Oh, Anselm
1 / 3 shared
Feng, Yuqing
1 / 5 shared
Chart of publication period
2023
2021
2017

Co-Authors (by relevance)

  • Phua, Arden
  • Davies, Chris
  • Cummins, Sharen
  • Ritchie, David
  • Cleary, Paul
  • Gunasegaram, Dayalan
  • Sinnott, Matt
  • Nguyen, Vu
  • Owen, Phil
  • Styles, Mark
  • Oh, Anselm
  • Feng, Yuqing
OrganizationsLocationPeople

article

The Effect of Recoater Geometry and Speed on Granular Convection and Size Segregation in Powder Bed Fusion

  • Phua, Arden
  • Davies, Chris
  • Delaney, Gary
  • Owen, Phil
Abstract

In metal additive manufacturing (AM), powder bed fusion technologies such as selective laser melting and binder jetting rely on the spreading of fine metal powder to build up the layers of a part. This work studies the complex interaction between metal powder particles and the recoater. We apply the Discrete Element Method (DEM) to a calibrated cohesive Ti-6Al-4V powder model, matching the particle properties to experimental measurements of size, shape and inter-particle forces. We simulate powder bed fusion recoating at varying speeds and layer thicknesses with two different recoater geometries: a toothed rake and a solid blade. Our results demonstrate that the recoating mechanism induces significant granular convection, with the recoater velocity and geometry strongly influencing the degree of particle circulation and size segregation. Notably a toothed rake recoater improved particle circulation – while the solid blade recoater increases size segregation within the heap. Furthermore the recoater was found to filter fine and coarse particles, allowing smaller particles to flow underneath the recoater, and larger particles through its teeth. Our results demonstrate the key mechanisms which drive granular convection during recoating and how the fine details of recoater geometry impacts surface layer roughness and final part quality.

Topics
  • surface
  • selective laser melting
  • binder jetting
  • discrete element method