Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ozel, Ali

  • Google
  • 2
  • 10
  • 40

Heriot-Watt University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020Calibrating Friction Coefficients in Discrete Element Method Simulations with Shear-Cell Experiments19citations
  • 2020Effect of particle size on tribocharging21citations

Places of action

Chart of shared publication
Angus, Andrew
1 / 1 shared
Yahia, Lyes Ait Ali
1 / 1 shared
Maione, Riccardo
1 / 1 shared
Khala, Marv
1 / 1 shared
Hare, Colin
1 / 4 shared
Ocone, Raffaella
1 / 1 shared
Nwogbaga, Ifunanya
1 / 1 shared
Kolehmainen, Jari
1 / 1 shared
Liu, Xiaoyu
1 / 2 shared
Sundaresan, Sankaran
1 / 1 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Angus, Andrew
  • Yahia, Lyes Ait Ali
  • Maione, Riccardo
  • Khala, Marv
  • Hare, Colin
  • Ocone, Raffaella
  • Nwogbaga, Ifunanya
  • Kolehmainen, Jari
  • Liu, Xiaoyu
  • Sundaresan, Sankaran
OrganizationsLocationPeople

article

Effect of particle size on tribocharging

  • Nwogbaga, Ifunanya
  • Kolehmainen, Jari
  • Liu, Xiaoyu
  • Ozel, Ali
  • Sundaresan, Sankaran
Abstract

Total charge acquired by soda-lime glass particles of two different sizes in nitrogen environment were measured in vibrated beds. A systematic difference of surface charge density was observed. Complementary Discrete Element Method simulations were performed to examine how this size dependence could be captured in a tribocharging model. Neither dielectric breakdown of the gas nor charge relaxation could explain the size dependence. A mechanistic model is not developed in this study, but experimental charge levels could be captured by allowing the effective work function (EWF) to be different for two particle sizes. The same EWF difference between the two sizes could capture the results obtained in vibrated beds of two different dimensions and two different wall materials. This approach was applied to examine the charging behavior of a bidisperse system studied experimentally. Their results could be reproduced if size dependent EWF is coupled with stochastic variation within each particle size.

Topics
  • density
  • impedance spectroscopy
  • surface
  • simulation
  • glass
  • glass
  • Nitrogen
  • lime
  • discrete element method