People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Simmons, Mark
University of Birmingham
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Design of slurries for 3D printing of sodium-ion battery electrodescitations
- 2023Comparison between RANS and 3D-PTV measurements of Newtonian and non-Newtonian fluid flows in a stirred vessel in the transitional regimecitations
- 2023Thermomechanical Responses of Microcracks in a Honeycomb Particulate Filter
- 2022Rheology and structure of lithium‐ion battery electrode slurriescitations
- 2021Understanding the effects of processing conditions on the formation of lamellar gel networks using a rheological approachcitations
- 2021Lagrangian investigations of a stirred tank fluid flow using 3D-PTVcitations
- 2020Ironmaking and Steelmaking Slags As Sustainable Adsorbents For Industrial Effluents And Wastewater Treatmentcitations
- 2017Investigating the impact of operating conditions on the extent of additive mixing during thermoplastic polymer extrusioncitations
- 2016Agglomeration in counter-current spray drying towers. Part A: Particle growth and the effect of nozzle heightcitations
- 2016A comparison of methods for in-situ discrimination of imaged phase boundaries using Electrical Capacitance Tomography
- 2016The impact of process parameters on the purity and chemical properties of lignin extracted from miscanthus x giganteus using a modified organosolv method
- 2013An Assessment of the Influence of Gas Turbine Lubricant Thermal Oxidation Test Method Parameters Towards the Development of a New Engine Representative Laboratory Test Methodcitations
- 2013Kinetics of metals adsorption in acid mine drainage treatment with blast furnace slag
- 2009Influence of surfactant upon air entrainment hysteresis in curtain coatingcitations
- 2007Influence of vicosity and impingement speed on intense hydrodynamic assist in curtain coatingcitations
- 2006Hysteresis and non-uniqueness in the speed of onset of instability in curtain coatingcitations
- 2006Influence of the flow field in curtain coating onto a prewet substratecitations
Places of action
Organizations | Location | People |
---|
article
Agglomeration in counter-current spray drying towers. Part A: Particle growth and the effect of nozzle height
Abstract
Agglomeration of particles and droplets is critical to the operation of spray dryers, however it remains relatively unexplored. This paper studies the effect of the nozzle height on product properties, wall deposits and dryer conditions in a counter-current spray drying tower of detergent with a swirling air flow. The process efficiency is driven by changes in particle agglomeration. To interpret the results and facilitate the study of swirl towers, it is useful to subdivide these units according to the sources of growth in (a) spray region(s), (b) concentrated near-wall region(s) and (c) wall deposits. The particles formed are very heterogeneous and show a size-dependent composition. In this case, particle properties are driven by the separation of solid and liquid phases during atomization and the formation of a heterogeneous set of droplets. Agglomeration serves to homogenise the product and create a distinct source of porosity. The capacity and energy consumption of the dryer are also determined by the evolution of the particle size, as fine powder is elutriated from the tower top and coarse particles are removed from the product. When the nozzle is moved to lower positions in the tower the increased temperature near the spray suppresses agglomeration, however the residence time is shortened and ultimately it leads to creation of wet, coarse granules. An optimum location is found high enough to maintain the drying efficiency but sufficiently far from the top exit to minimise the loss of fine particles. In this way, a capacity ratio (i.e. product vs spray dried powder) C > 90% can be obtained and energy efficiency maximised.