People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jensen, Anker Degn
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2021Characterization of oxide-supported Cu by infrared measurements on adsorbed COcitations
- 2021Promoting effect of copper loading and mesoporosity on Cu-MOR in the carbonylation of dimethyl ether to methyl acetatecitations
- 2020Structural dynamics of an iron molybdate catalyst under redox cycling conditions studied with in situ multi edge XAS and XRDcitations
- 2019Modeling of the molybdenum loss in iron molybdate catalyst pellets for selective oxidation of methanol to formaldehydecitations
- 2019Catalytic Hydropyrolysis of Biomass using Molybdenum Sulfide Based Catalyst. Effect of Promoterscitations
- 2018Characterization of free radicals by electron spin resonance spectroscopy in biochars from pyrolysis at high heating rates and at high temperaturescitations
- 2018Hydrogen assisted catalytic biomass pyrolysis for green fuels. Effect of cata-lyst in the fluid bed
- 2016Characterization of Free Radicals By Electron Spin Resonance Spectroscopy in Biochars from Pyrolysis at High Heating Rates and at High Temperatures
- 2016Characterization of Free Radicals By Electron Spin Resonance Spectroscopy in Biochars from Pyrolysis at High Heating Rates and at High Temperatures
- 2016Characterization of free radicals by electron spin resonance spectroscopy in biochars from pyrolysis at high heating rates and at high temperaturescitations
- 2016Characterization of free radicals by electron spin resonance spectroscopy in biochars from pyrolysis at high heating rates and at high temperaturescitations
- 2014In situ observation of Cu-Ni alloy nanoparticle formation by X-ray diffraction, X-ray absorption spectroscopy, and transmission electron microscopy: Influence of Cu/Ni ratiocitations
- 2014Electron microscopy study of the deactivation of nickel based catalysts for bio oil hydrodeoxygenation
- 2012Dynamic measurement of mercury adsorption and oxidation on activated carbon in simulated cement kiln flue gascitations
- 2012Catalytic Conversion of Syngas into Higher Alcohols over Carbide Catalystscitations
- 2012CO hydrogenation to methanol on Cu–Ni catalystscitations
- 2012CO hydrogenation to methanol on Cu–Ni catalysts:Theory and experimentcitations
- 2011Alkali resistant Fe-zeolite catalysts for SCR of NO with NH3 in flue gasescitations
- 2011Flame spray synthesis of CoMo/Al2O3 hydrotreating catalystscitations
- 2010Oxy-fuel combustion of solid fuelscitations
- 2009Fluidized-Bed Coating with Sodium Sulfate and PVA-TiO2, 1. Review and Agglomeration Regime Mapscitations
- 2008A review of the interference of carbon containing fly ash with air entrainment in concretecitations
- 2008Top-spray fluid bed coating: Scale-up in terms of relative droplet size and drying forcecitations
Places of action
Organizations | Location | People |
---|
article
Top-spray fluid bed coating: Scale-up in terms of relative droplet size and drying force
Abstract
Top-spray fluid bed coating scale-up experiments have been performed in three scales in order to test the validity of two parameters as possible scaling parameters: The drying force and the relative droplet size. The aim was to be able to reproduce the degree of agglomeration as well as the mechanical properties of the coated granules across scale. Two types of placebo enzyme granule cores were tested being non-porous glass ballotini cores (180-350 mu m) and low porosity sodium sulphate cores (180-350 mu m). Both types of core materials were coated with aqueous solutions of Na2SO4 using Dextrin as binder. Coating experiments were repeated for various drying force and relative droplet size values in three top-spray fluid bed scales being a small-scale (Type: GEA Aeromatic-Fielder Strea-1), medium-scale (Type: Niro MP-1) and large-scale (Type: GEA MP-2/3). The tendency of agglomeration was assessed in terms of particle size fractions larger than 425 mu m determined by sieve analysis. Results indicated that the particle size distribution may be reproduced across scale with statistical valid precision by keeping the drying force and the relative droplet size constant across scale. It is also shown that none of the two parameters alone may be used for successful sealing. Morphology and microscope studies indicated that the coating layer is homogenous and has similar structures across scale only when both the drying force and the relative droplet size were fixed. Impact and attrition tests indicated that it is possible to produce granules with similar attrition and impact strength across scale and that the two types of mechanical properties are inversely related.