Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nowacki, Marcin

  • Google
  • 1
  • 1
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Influence of temperature on electrochemical and electrochromic properties of naphthalenediimide-triphenylamine-based polymer8citations

Places of action

Chart of shared publication
Wałęsa-Chorab, Monika
1 / 11 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Wałęsa-Chorab, Monika
OrganizationsLocationPeople

article

Influence of temperature on electrochemical and electrochromic properties of naphthalenediimide-triphenylamine-based polymer

  • Wałęsa-Chorab, Monika
  • Nowacki, Marcin
Abstract

The naphtalenediimide-triphenylamine monomer (NDI-TPA) has been obtained in the multistep synthesis and it was used to the formation of thin layer of the polymer on the electrode surface via electropolymerization. The monomer contains four triphenylamine groups and it forms cross-linked multielectrochromic polymer that change its color during both oxidation and reduction processes. To investigate the influence of temperature on the electrochemical properties of the polymer coating the cyclic voltammograms at different temperatures and scan speeds have been recorded. It was found that with the increase of temperature the separation between the oxidation and reverse peaks decreases and the ipc/ipa value increases, indicating that at higher temperatures the electrochemical reaction is faster and more reversible. The influence of temperature on the electrochromic properties was also investigated and it was found that with the increase of temperature the response times become shorter, but at higher temperatures the degradation of the polymer film occurs faster.

Topics
  • impedance spectroscopy
  • surface
  • polymer
  • ion-pair chromatography