Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bozec, Nathalie Le

  • Google
  • 1
  • 5
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Ageing processes of coil-coated materials: Temperature-controlled electrochemical impedance analysis3citations

Places of action

Chart of shared publication
Thierry, Dominique
1 / 12 shared
Caussé, Nicolas
1 / 28 shared
Roggero, Aurélien
1 / 13 shared
Pébère, Nadine
1 / 59 shared
Bonin, Pierre
1 / 3 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Thierry, Dominique
  • Caussé, Nicolas
  • Roggero, Aurélien
  • Pébère, Nadine
  • Bonin, Pierre
OrganizationsLocationPeople

article

Ageing processes of coil-coated materials: Temperature-controlled electrochemical impedance analysis

  • Bozec, Nathalie Le
  • Thierry, Dominique
  • Caussé, Nicolas
  • Roggero, Aurélien
  • Pébère, Nadine
  • Bonin, Pierre
Abstract

In the present work, an industrial polyester coil-coated steel was characterized by electrochemical impedance spectroscopy (EIS) during immersion in a 0.5 M NaCl solution for different temperatures (30, 40, 50 and 60 °C). The objective was to propose a methodology to follow the ageing of the coil-coated system, from the first stage of water uptake until the blistering appearance. Relevant parameters were extracted from the EIS diagrams to analyse ageing processes of the polymer and of the metal/polymer interface. Water uptake was determined from the high-frequency part of the impedance diagrams using a linear rule of mixtures. By increasing the temperature, both the water uptake kinetics and the water content in the coating increased. The effect of water uptake on the physical structure of the coating (plasticization) was discussed through the analysis of a time constant corresponding to the dielectric manifestation of the polymer glass transition. At 40, 50 and 60 °C, appearance of corrosion was detected on the impedance spectra by a decrease, at low frequency, of the impedance modulus and of the phase angle. For 60 °C, the corroded surface area as a function of time, was assessed from the EIS data analysis with adapted equivalent circuits. The corroded surface areas followed similar trend as blister surface areas determined from images analysis.

Topics
  • surface
  • polymer
  • corrosion
  • phase
  • glass
  • glass
  • steel
  • electrochemical-induced impedance spectroscopy
  • aging