People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wurm, Frederik R.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (42/42 displayed)
- 2024Helical Polyamines
- 2023Copolymerizing Lignin for Tuned Properties of 3D-Printed PEG-Based Photopolymerscitations
- 2023Biodegradable polyphosphoester micelles act as both background-free 31P magnetic resonance imaging agents and drug nanocarrierscitations
- 2023Water-soluble polyphosphonate-based bottlebrush copolymers via aqueous ring-opening metathesis polymerizationcitations
- 2023The microstructure of polyphosphoesters controls polymer hydrolysis kinetics from minutes to yearscitations
- 2023Real-time 31P NMR reveals different gradient strengths in polyphosphoester copolymers as potential MRI-traceable nanomaterialscitations
- 2023Reversible acetalization of cellulosecitations
- 2023Towards more homogeneous character in 3D printed photopolymers by the addition of nanofillerscitations
- 2022Real-Time 1H and 31P NMR spectroscopy of the copolymerization of cyclic phosphoesters and trimethylene carbonate reveals transesterification from gradient to random copolymerscitations
- 2021Green synthesis and characterization of poly(glycerol-azelaic acid) and its nanocomposites for applications in regenerative medicinecitations
- 2021Facile template preparation of novel electroactive scaffold composed of polypyrrole-coated poly(glycerol-sebacate-urethane) for tissue engineering applicationscitations
- 2021RNA-inspired intramolecular transesterification accelerates the hydrolysis of polyethylene-like polyphosphoesterscitations
- 2021Display of hidden properties of flexible aerogel based on bacterial cellulose/polyaniline nanocomposites with helping of multiscale modelingcitations
- 2020Intrinsic flame retardant phosphonate-based vitrimers as a recyclable alternative for commodity polymers in composite materialscitations
- 2020Developing antibacterial superhydrophobic coatings based on polydimethylsiloxane/silver phosphate nanocompositescitations
- 2020Controlling the biodegradation rates of poly(globalide-co-ε-caprolactone) copolymers by post polymerization modificationcitations
- 2019Matrix matterscitations
- 2019Supercooled Water Drops Do Not Freeze During Impact on Hybrid Janus Particle-Based Surfacescitations
- 2019Copolymerization of Cyclic Phosphonate and Lactide: Synthetic Strategies toward Control of Amphiphilic Microstructurecitations
- 2018Surface-attached poly(phosphoester)-hydrogels with benzophenone groupscitations
- 2018Temperature responsive poly(phosphonate) copolymerscitations
- 2017Poly(alkyl ethylene phosphonate)scitations
- 2017Acid-labile surfactants based on poly(ethyleneglycol), carbon dioxide and propylene oxidecitations
- 2016Fast ultrasound assisted synthesis of chitosan-based magnetite nanocomposites as a modified electrode sensorcitations
- 2016Sequence-Controlled Polymers via Simultaneous Living Anionic Copolymerization of Competing Monomerscitations
- 2016Acid-Labile Amphiphilic PEO-b-PPO-b-PEO Copolymerscitations
- 2016Processing and adjusting the hydrophilicity of poly(oxymethylene) (co)polymerscitations
- 2016Poly(phosphorodiamidate)s by Olefin Metathesis Polymerization with Precise Degradationcitations
- 2016Side-chain poly(phosphoramidate)scitations
- 2015Vinyl ferrocenyl glycidyl ethercitations
- 2014Ferrocene-containing multifunctional polyetherscitations
- 2014Stabilization of nanoparticles synthesized by miniemulsion polymerization using "green" amino-acid based surfactantscitations
- 2013Enlarging the toolboxcitations
- 2013Microstructure analysis of biocompatible phosphoester copolymerscitations
- 2013Ferrocenyl glycidyl ethercitations
- 2013Unsaturated poly(phosphoester)s via ring-opening metathesis polymerizationcitations
- 2012Hyperbranched Polymerscitations
- 2011Rapid access to polyfunctional lipids with complex architecture via oxyanionic ring-opening polymerizationcitations
- 2011PEG-based multifunctional polyethers with highly reactive vinyl-ether side chains for click-type functionalizationcitations
- 2010"Functional poly(ethylene glycol)"citations
- 2008Carbanions on tap - Living anionic polymerization in a microstructured reactorcitations
- 2008Ionic polymerizations in microstructured reactors
Places of action
Organizations | Location | People |
---|
article
Developing antibacterial superhydrophobic coatings based on polydimethylsiloxane/silver phosphate nanocomposites
Abstract
<p>Nanocomposite coatings based on polydimethylsiloxane (PDMS) and silver phosphate (Ag<sub>3</sub>PO<sub>4</sub>) nanoparticles were developed to achieve superhydrophobicity, antibacterial behavior and low protein adsorption. Since the as-synthesized nanoparticles were hydrophilic, octadecanethiol was added into the coatings’ solutions. Wettability results demonstrated that the higher the nanoparticle content, the higher the water contact angle (WCA). The highest WCA was observed for 7 wt% inclusion of nanoparticles (152°). Morphological analysis revealed the surface localization of nanoparticles and a packed structure in case of 7 wt% nanoparticle inclusion. From the roughness results, the ratio of texture surface area to cross-sectional area was found to be notably increased at higher nanoparticle contents. The presence of Ag<sub>3</sub>PO<sub>4</sub> nanoparticles at the coatings’ top layer was confirmed by X-ray photoelectron spectroscopy. Antibacterial activity of the coatings significantly enhanced upon increasing the nanoparticle content. As a result of a true superhydrophobic (roll-off) behavior for 7 wt% nanoparticle inclusion, the protein adsorption was highly reduced (∼83 %) due to the enclosed air layer within the surface cavities leading to a lowered contact area of proteins with the coating's surface. The combination of superhydrophobicity, antibacterial behavior and low protein adsorption leads to a biocompatible coating which could have many biomedical applications needing further investigations.</p>