People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Liu, Yanwen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Multi-Analytical Study of Damage to Marine Ballast Tank Coatings After Cyclic Corrosion Testing
- 2024High resolution analytical microscopy of damage progression within a polyester powder coating after cyclic corrosion testing
- 2021Local oxidation of the buried epoxy-amine/iron oxide interphasecitations
- 2021Local Oxidation of the Buried Epoxy-Amine / Iron Oxide Interphase
- 2020Examining the early stages of thermal oxidative degradation in epoxy-amine resinscitations
- 2019Leaching from coatings pigmented with strontium aluminium polyphosphate inhibitor pigment- evidence for a cluster-percolation modelcitations
- 2019How pigment volume concentration (PVC) and particle connectivity affect leaching of corrosion inhibitive species from coatingscitations
- 2018Multi-Modal Plasma Focused Ion Beam Serial Section Tomography of an Organic Paint Coatingcitations
- 2017Molecularly Controlled Epoxy Network Nanostructurescitations
- 2017Time-lapse lab-based X-ray nano-CT study of corrosion damagecitations
- 2017An organic coating pigmented with strontium aluminium polyphosphate for corrosion protection of zinc alloy coated steelcitations
- 2017An organic coating pigmented with strontium aluminium polyphosphate for corrosion protection of zinc alloy coated steelcitations
- 2017Influence of Volume Concentration of Active Inhibitor on Microstructure and Leaching Behaviour of a Model Primercitations
- 2016Lithium salts as leachable corrosion inhibitors and potential replacement for hexavalent chromium in organic coatings for the protection of aluminum alloyscitations
- 2016Corrosion inhibition of pure aluminium and AA2014-T6 alloy by strontium chromate at low concentrationcitations
- 2016An investigation of the corrosion inhibitive layers generated from lithium oxalatecontaining organic coating on AA2024-T3 aluminium alloycitations
- 2015The corrosion protection of AA2024-T3 aluminium alloy by leaching of lithium-containing salts from organic coatingscitations
- 2015The corrosion protection of AA2024-T3 aluminium alloy by leaching of lithium-containing salts from organic coatingscitations
- 2015Protective Film Formation on AA2024-T3 Aluminum Alloy by Leaching of Lithium Carbonate from an Organic Coating
- 2010Corrosion behaviour of mechanically polished AA7075-T6 aluminium alloycitations
- 2006Morphology, composition and structure of anodic films on binary Al-Cu alloyscitations
- 2002Imaging XPS investigation of the lateral distribution of copper inclusions at the abraded surface of 2024T3 aluminium alloy and adsorption of decyl phosphonic acidcitations
Places of action
Organizations | Location | People |
---|
article
Leaching from coatings pigmented with strontium aluminium polyphosphate inhibitor pigment- evidence for a cluster-percolation model
Abstract
Model organic coatings were formulated with different volume concentrations of strontium aluminium polyphosphate (SAPH) inhibitor pigment. Leaching measurements were performed from the top surfaces of the coatings. The microstructure of the coatings and the distribution of phosphorus and strontium within the coatings prior to and after exposure to an aggressive environment were characterized by SEM, EDS and EDXRF. The increase in inhibitor pigment volume concentration (PVC) results in the formation of larger clusters of connected inhibitor pigments within the coatings, which coincides with higher leaching rates from the coatings with higher inhibitor PVC. It is revealed that in the presence of the large clusters, the concentrations of inhibitor pigments decreases through the entire thickness of the exposed coating. In contrast, when the inhibitor PVC is low and elongated clusters of inhibitor pigments do not span the thickness of the coating, the reduction of the inhibitor pigment concentration within the exposed coating is limited to regions closer to the coating/environment interface. On the other hand, EDS analysis shows that after exposure, the concentrations of species released from the inhibitor pigments are below the detection limit within the polymeric binder. It is also shown that the diffusion through the polymeric binder would appear to be the limiting factor that retards the leaching from the coating, suggesting that diffusion through the polymeric binder is not the dominant transport mechanism for leaching of species released from the inhibitor pigments. A cluster model appears to describe well the leaching of inhibitive species released from the SAPH inhibitor pigments incorporated into the organic coatings.