Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lisiecki, Filip

  • Google
  • 1
  • 4
  • 46

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Towards the development of superhydrophobic carbon nanomaterial coatings on wood46citations

Places of action

Chart of shared publication
Koziol, Krzysztof
1 / 5 shared
Dudkowiak, Alina
1 / 2 shared
Lekawa-Raus, Agnieszka
1 / 7 shared
Lukawski, Damian
1 / 3 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Koziol, Krzysztof
  • Dudkowiak, Alina
  • Lekawa-Raus, Agnieszka
  • Lukawski, Damian
OrganizationsLocationPeople

article

Towards the development of superhydrophobic carbon nanomaterial coatings on wood

  • Koziol, Krzysztof
  • Dudkowiak, Alina
  • Lekawa-Raus, Agnieszka
  • Lukawski, Damian
  • Lisiecki, Filip
Abstract

Carbon nanomaterials (CNMs) have recently been used to form superhydrophobic coatings on metals, synthetic polymers or textiles. Here we investigate the possibility of using carbon black (CB), graphene (Gr) and carbon nanotubes (CNTs), as water repellent agents on naturally hydrophilic wood. We show that it is possible to form homogeneous CNM coatings on any type of wood via simple methods of drop casting and dip coating, using CNMs dispersed in organic solvents or water. Contact angle measurements of wood coated with only 0.05 g/m2 CNTs and 0.25 g/m2 Gr gave the results exceeding 130°, indicating apparent hydrophobicity. Yet, high adhesion of the droplets was observed, simultaneously suggesting a “rose petal” type of superhydrophobic behavior. That may be explained by the formation of micro-nano architectures in which low surface energy CNMs deposited on microrough surface of wood cause superhydrophobicity. Yet, due to heterogeneity of wood, some part of hydrophilic surface is still uncovered, resulting in high adhesion of water. Finally, although Gr and CNT were only physically bond to wood surface, the hydrophobic properties of CNM coatings were maintained after sandpaper abrasion test. Moreover, wood fibers and particles covered with Gr showed the decrease of water absorption equal 98% and 87%, respectively.

Topics
  • impedance spectroscopy
  • surface
  • polymer
  • Carbon
  • nanotube
  • casting
  • wood
  • surface energy
  • dip coating