Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mills, Douglas J.

  • Google
  • 15
  • 17
  • 672

University of Northampton

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (15/15 displayed)

  • 2017Advances in corrosion protection by organic coatings: what we know and what we would like to know379citations
  • 2016The application of organic coatings in conservation of archaeological objects excavated from the sea11citations
  • 2016Analysis of electrochemical noise measurement on an organically coated metal24citations
  • 2014Steel surface preparation prior to painting and its impact on protective performance of organic coating37citations
  • 2014Effect of hardener variation on protective properties of polyurethane coating41citations
  • 2012Investigation into the effect of nano-silica on the protective properties of polyurethane coatings74citations
  • 2011Investigation of morphological and electrical properties of the PMMA coating upon exposure to UV irradiation based on AFM studies20citations
  • 2010Effect of different surface preparations prior to painting on the corrosion behaviour and surface activity of mild steelcitations
  • 2010The influence of UV light on performance of poly(methyl methacrylate) in regard to dye-sensitised solar cells1citations
  • 2010Use of electrochemical methods to examine different surface preparation methods for organic coatings on steel19citations
  • 2010Electrochemical characterization of mild steel after different surface preparationscitations
  • 2008Using novel electrochemical test methods to aid in the development of low volatile organic compound (VOC) coatingscitations
  • 2008Continuing work to enable electrochemical methods to be used to monitor the performance of organic coatings in the field14citations
  • 2007MPs and lords learn something about corrosion!citations
  • 2001A comparison between conventional macroscopic and microscopic scanning electrochemical methods to evaluate galvanic corrosion52citations

Places of action

Chart of shared publication
Lyon, Stuart B.
1 / 56 shared
Bingham, R.
1 / 3 shared
Schaefer, Katarzyna
1 / 1 shared
Cottis, Robert A.
1 / 3 shared
Lan, Tian Yang
1 / 1 shared
Jamali, Sina S.
3 / 3 shared
Papaj, Ewa A.
1 / 1 shared
Paprocka, K.
1 / 1 shared
Jamali, S.
3 / 6 shared
Darowicki, K.
2 / 3 shared
Szocinski, M.
2 / 2 shared
Schaefer, Kataryzna
3 / 3 shared
Woodcock, Christopher Paul
1 / 1 shared
Singh, H. T.
1 / 1 shared
Rosaq, Ishtiaq
1 / 1 shared
Broster, M.
1 / 1 shared
Akid, R.
1 / 26 shared
Chart of publication period
2017
2016
2014
2012
2011
2010
2008
2007
2001

Co-Authors (by relevance)

  • Lyon, Stuart B.
  • Bingham, R.
  • Schaefer, Katarzyna
  • Cottis, Robert A.
  • Lan, Tian Yang
  • Jamali, Sina S.
  • Papaj, Ewa A.
  • Paprocka, K.
  • Jamali, S.
  • Darowicki, K.
  • Szocinski, M.
  • Schaefer, Kataryzna
  • Woodcock, Christopher Paul
  • Singh, H. T.
  • Rosaq, Ishtiaq
  • Broster, M.
  • Akid, R.
OrganizationsLocationPeople

article

Advances in corrosion protection by organic coatings: what we know and what we would like to know

  • Mills, Douglas J.
  • Lyon, Stuart B.
  • Bingham, R.
Abstract

Organic coatings are the single most widely applied method for corrosion protection of metallic materials and are of particular importance in transport and infrastructure. Nevertheless, despite over one hundred years of research and testing, the mechanisms of coatings failure are still somewhat obscure. This paper provides a brief overview of current knowledge in how protective coatings work and poses questions that we need to answer in order to develop a more predictive model for coating performance.It is shown how heterogeneity leading to electrochemical variations is important both in polymer structure (i.e. local variation in polymer conductivity influenced by the external electrolyte) and in light alloys (e.g. 2nd phase particles act as local cathodes or anodes). The conclusion is that no single protective mechanism is operative in organic coatings. Long-term performance is predicated on a number of complementary processes working holistically. By developing an understanding of the mechanisms and critical factors behind long-term performance, a predictive toolkit for “how paint fails” might usefully be created.

Topics
  • impedance spectroscopy
  • polymer
  • corrosion
  • phase