People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Erich, Bart
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
Places of action
Organizations | Location | People |
---|
article
Water permeability of pigmented waterborne coatings
Abstract
Coatings are used in a variety of applications. Last decades more and more coating systems are transforming from solvent to waterborne coating systems. In this study the influence of pigments on the water permeability of a waterborne coating system is studied, with special interest in the possible interfacial layer of additives around the pigments. In our study an acrylate based binder is mixed with different glass sphere concentrations and sizes. Subsequently, the coating permeability is studied through wet-cup experiments and water uptake in the coating, either on a glass substrate or on wood, is monitored with NMR. These experiments show that water is absorbed more quickly by coatings containing glass spheres. From the experimental results it can be concluded that an interface layer around the pigment particles facilitates water migration and increases the effective diffusion. A modification of the effective medium theory is used to describe the observation and good agreement between experiments and theory is obtained. Both theory and experiment show that in a coating a layer around the pigments facilitates water transport and increases the effective diffusion constant.