People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Erik Weinell, Claus
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (33/33 displayed)
- 2024Protective Mechanisms of Siloxane-Modified Epoxy Novolac Coatings at High-Pressure, High-Temperature Conditions
- 2024Advancing Coating Science: Non-Destructive Methods for Coating Degradation Evaluation and Breakdown Mechanism Investigation
- 2023Incorporation of unmodified technical Kraft lignin particles in anticorrosive epoxy novolac coatings
- 2023Trust, but verify!
- 2023Chemically-resistant epoxy novolac coatings: Effects of size-fractionated technical Kraft lignin particles as a structure-reinforcing componentcitations
- 2022Marine biofouling resistance rating using image analysiscitations
- 2022Detection and quantification of premature crack formation in curing epoxy coatingscitations
- 2022Encapsulated Inhibitive Pigment for Smart Anti-corrosive Epoxy Coatings
- 2022A Tunable Hyperspectral Imager for Detection and Quantification of Marine Biofouling on Coated Surfacescitations
- 2022Coating degradation and rust creep assessment - A comparison between a destructive method according to ISO 12944 and selected non-destructive methods
- 2022Parallel measurements and engineering simulations of conversion, shear modulus, and internal stress during ambient curing of a two-component epoxy coatingcitations
- 2022Self-stratification studies in waterborne epoxy-silicone systemscitations
- 2022Non-destructive Evaluation of Coating Degradation and Rust Creep
- 2021Methanol degradation mechanisms and permeability phenomena in novolac epoxy and polyurethane coatingscitations
- 2021The influence of CO2 at HPHT conditions on properties and failures of an amine-cured epoxy novolac coatingcitations
- 2021Simultaneous tracking of hardness, reactant conversion, solids concentration, and glass transition temperature in thermoset polyurethane coatingscitations
- 2021A Tannin-based Inhibitive Pigment for a Sustainable Anti-corrosive Epoxy Coating Formulation
- 2021Degradation pathways of amine-cured epoxy novolac and bisphenol F resins under conditions of high pressures and high temperatures
- 2021Effects of Biochar Nanoparticles on Anticorrosive Performance of Zinc-rich Epoxy Coatingscitations
- 2021Rust creep assessment - A comparison between a destructive method according to ISO 12944 and selected non-destructive methodscitations
- 2021Simultaneous tracking of hardness, reactant conversion, solids concentration, and glass transition temperature in thermoset polyurethane coatingscitations
- 2021The evolution of coating properties and internal stress during ambient curing of a two-component epoxy coating
- 2019Corrosion Protection of Epoxy Coating with Calcium Phosphate Encapsulated by Mesoporous Silica Nanoparticles
- 2019Exposure of hydrocarbon intumescent coatings to the UL1709 heating curve and furnace rheology: Effects of zinc borate on char propertiescitations
- 2019Measurements of methanol permeation rates across thermoset organic coatings
- 2009Advancements in high performance zinc epoxy coatings
- 2008Non-destructive determination of rust creep
- 2007Advancement in zinc rich epoxy primers for corrosion protection
- 2007Adhesion between coating layers based on epoxy and siliconecitations
- 2006Dissolution rate measurements of sea water soluble pigments for antifouling paintscitations
- 2006Anti-fouling silicone elastomers for offshore structures
- 2005Reaction rate estimation of controlled-release antifouling paint binders: Rosin-based systemscitations
- 2005Reaction rate estimation of controlled-release antifouling paint binders: Rosin-based systemscitations
Places of action
Organizations | Location | People |
---|
article
Dissolution rate measurements of sea water soluble pigments for antifouling paints
Abstract
The dissolution of soluble pigments from both tin-based and tin-free chemically active antifouling (AF) paints is a key process influencing their polishing and biocide leaching rates. In this context, a low time- and resources-consuming method capable of screening the pigment behaviour in the search for the most promising materials or mixtures is of great interest. A preliminary attempt to develop such a method is presented in this paper based on the widely used ZnO pigments.<br/><br/>While highly pure, nano-polished, monocrystalline ZnO substrates yielded very low dissolution rates in the order of 17.3 +/- 3.7 mu g Zn2+ cm(-2) day(-1), pellets prepared by compacting and sintering technical grade ZnO pigments dissolved about three times faster according to inductively-coupled plasma mass spectrometry (ICP-MS) measurements. The rougher and more porous surface exposed, together with the larger number of defects in the lattice structure, are hypothesised to be responsible for the faster sea water attack of the pellets compared to the ZnO crystals. In any case, the ZnO dissolution rates reported in this paper are markedly lower than those associated with the sea water dissolution of cuprous oxide (Cu2O) particles which are also used in AF paints. Experimental performance testing of model antifouling paints formulated with ZnO and/or Cu2O demonstrates that the binder/pigment interaction should not be disregarded if the leaching of sea water soluble pigments from paint systems is to be determined. (C) 2006 Elsevier B.V. All rights reserved.