Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Meuchelböck, J.

  • Google
  • 3
  • 8
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Compression testing of EPP bead foams in a vacuum chamber2citations
  • 2024On the determination of viscoelastic properties of EPP foam in dependence on pre-strain and loading directioncitations
  • 2023Analysis of density-dependent bead and cell structure of expanded polypropylene bead foams from X-ray computed tomography of different resolution7citations

Places of action

Chart of shared publication
Ruckdäschel, H.
3 / 7 shared
Grüber, Bernd
1 / 20 shared
Koch, I.
3 / 40 shared
Müller-Pabel, M.
3 / 10 shared
Müller-Pabel, Michael
1 / 34 shared
Grüber, B.
2 / 22 shared
Gude, Mike
3 / 775 shared
Preiß, G.
1 / 2 shared
Chart of publication period
2024
2023

Co-Authors (by relevance)

  • Ruckdäschel, H.
  • Grüber, Bernd
  • Koch, I.
  • Müller-Pabel, M.
  • Müller-Pabel, Michael
  • Grüber, B.
  • Gude, Mike
  • Preiß, G.
OrganizationsLocationPeople

article

Compression testing of EPP bead foams in a vacuum chamber

  • Ruckdäschel, H.
  • Grüber, Bernd
  • Koch, I.
  • Müller-Pabel, M.
  • Müller-Pabel, Michael
  • Meuchelböck, J.
  • Grüber, B.
  • Gude, Mike
Abstract

<p>In this study, we systematically investigate the compression behavior of Expanded Polypropylene (EPP) bead foams using precise experiments in a custom-designed vacuum chamber. The material's response is examined under controlled pressure conditions, including compression tests at both ambient pressure and 4 mbar, at various strain rates. Considering that most foams consist of more than 90% air, our focus is on elucidating the influence of cell gas on mechanical properties, such as compression modulus, plateau stress, plateau slope, and energy absorption. The impact of cell gas on recovery behavior was analyzed by loading–unloading-steps in the vacuum chamber. Notably, the presence of cell gas shows a pronounced effect on the foam's deformation behavior, particularly in the plateau region, significantly affecting its resistance to deformation and energy absorption. The findings offer valuable insights for the development of foam materials and structures/components made of foams, especially in applications where resilience and durability are paramount.</p>

Topics
  • impedance spectroscopy
  • experiment
  • compression test
  • durability